Understanding biodiversity gradients is a long-standing challenge, and progress requires theory unifying ecology and evolution. Here, we unify concepts related to the speed of evolution, the influence of species richness on diversification, and niche-based coexistence. We focus on the dynamics, through evolutionary time, of community invasibility and species richness across a broad thermal gradient. In our framework, the evolution of body size influences the ecological structure and dynamics of a trophic network, and organismal metabolism ties temperature to eco-evolutionary processes. The framework distinguishes ecological invasibility (governed by ecological interactions) from evolutionary invasibility (governed by local ecology and constraints imposed by small phenotypic effects of mutation). The model yields four primary predictions: (1) ecological invasibility declines through time and with increasing temperature; (2) average evolutionary invasibility across communities increases and then decreases through time as the richness-temperature gradient flattens; (3) in the early stages of diversification, richness and evolutionary invasibility both increase with increasing temperature; and (4) at equilibrium, richness does not vary with temperature, yet evolutionary invasibility decreases with increasing temperature. These predictions emerge from the "evolutionary-speed" hypothesis, which attempts to account for latitudinal species richness gradients by invoking faster biological rates in warmer, tropical regions. The model contrasts with predictions from other richness-gradient hypotheses, such as "niche conservatism" and "species energy." Empirically testing our model's predictions should help distinguish among these hypotheses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/667577 | DOI Listing |
Annu Rev Entomol
January 2025
Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands.
Major changes in genetic variation are generally considered deleterious to populations. The massive biodiversity of insects distinguishes them from other animal groups. Insect deviant effective population sizes, alternative modes of reproduction, advantageous inbreeding, endosymbionts, and other factors translate to highly specific inbreeding and outbreeding outcomes.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Veterinary Science, University of Parma, 43121 Parma, Italy.
Reptile biodiversity is rapidly declining, with over 11,733 recognized species across 1226 genera being documented, many of which are endangered. Captive breeding programs play a crucial role in conservation; however, effective management requires accurate sex determination, especially due to the fact that many reptile species exhibit minimal or no sexual dimorphism. When present, sexual dimorphism manifests as differences such as size, coloration, and morphological features influenced by evolutionary pressures and hormones.
View Article and Find Full Text PDFJ Infect
January 2025
Center for Disease Control and Prevention of Chinese PLA, Beijing, China. Electronic address:
Objectives: Salmonella enterica serovar Enteritidis (S. Enteritidis) is a commonly reported pathogen which adapts to multiple hosts and causes critical disease burden at a global level. Here, we investigated a recently derived epidemic sublineage with multidrug resistance (MDR), which have caused extended time-period and cross-regional gastroenteritis outbreaks and even invasive nontyphoidal Salmonella disease (iNTS) in China.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria.
Bivalve mollusks are globally distributed in marine and freshwater habitats. While exhibiting a relatively uniform bodyplan that is characterized by their eponymous bivalved shell that houses the soft-bodied animal, many lineages have acquired unique morphological, physiological, and molecular innovations that account for their high adaptability to the various properties of aquatic environments such as salinity, flow conditions, or substrate composition. This renders them ideal candidates for studies into the evolutionary trajectories that have resulted in their diversity, but also makes them important players for research concerned with climate change-induced warming and acidification of aquatic habitats.
View Article and Find Full Text PDFNPJ Antimicrob Resist
April 2024
Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico.
Salmonella enterica serovar Typhimurium ST213 is an emergent multidrug-resistant sequence type associated with the food chain, and gastrointestinal and invasive infections in North America. Here, we applied genomic and phenotypic analyses to illustrate the diversity and evolution of sequence type ST213. The population structure and evolutionary history of ST213 strains, particularly the North American isolates (NA-ST213) distinguish them from other S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!