The oxidative stability of glyceroglycolipids (GLs) from spinach or brown edible seaweed (Laminaria japonica) was compared with those of phosphatidylcholines (PCs) from salmon roe and triacyglycerols (TAGs) from soybean oil or sardine oil. All the lipids were subjected to autoxidation after removing oxidants and/or antioxidants such as chlorophylls, tocopherols, and carotenoids. The oxidative stability of the lipids decreased with increasing number of bisallylic positions in the molecule. Due to the higher mean number of bisallylic positions, salmon roe PC and sardine oil TAG were oxidized more rapidly than soybean oil TAG. Spinach GL and brown edible seaweed GL showed the same oxidative stability as that found in soybean oil TAG, although the mean number of bisallylic positions of both GLs was much higher than that of soybean oil TAG and approached the number found in sardine oil TAG and salmon roe PC. The present study indicates the important effect of galactosyl and sulfoquinovosyl moieties on the oxidative stability of GL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5650/jos.61.505 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Qingdao Qingli Environmental Protectionquipmen Co, LTD, Jiaozhou, 266300, China.
With the growing demand for nickel in the stainless steel and battery industries, conventional methods of extracting nickel from ores face challenges such as high production costs and environmental concerns. This study proposes a new process for the recovery of nickel metal and the production of nickel-iron alloys from nickel-bearing scrap. The reduction rates of nickel and iron oxides were investigated by optimizing the roasting temperature, time, and C/O ratio, and the process was optimized using response surface methodology (RSM).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
The broader use of botanical pesticides has been limited by shorter residual activity on plants, slower onset of action, and higher costs compared with conventional pesticides. These challenges could be overcome by the development of simple, cost-effective, and long-lasting preventive nanocomposites for botanical pesticides. In this study, we successfully developed a low-cost ethyl cellulose (EC)-based delivery system for the botanical pesticide osthole (OST), designed to provide extended preventive protection against infestations.
View Article and Find Full Text PDFInorg Chem
January 2025
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
Hydrogen-bonded cocrystals have attracted considerable attention as they allow fine-tuning of properties through the choice of hydrogen-bond donors and acceptors. In this study, triphenylarsine oxide (PhAsO) is introduced as a strong hydrogen-bond acceptor molecule. Due to its higher Lewis basicity compared to triphenylphosphine oxide (PhPO), it acts as a strong hydrogen-bond acceptor, which is demonstrated in six new cocrystals with HO and -di(hydroperoxy)cycloalkanes.
View Article and Find Full Text PDFLangmuir
January 2025
Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.
In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, China.
Hemolytic anemia (HA) is characterized by massive destruction of red blood cells (RBCs) and insufficient oxygen supply, which can lead to shock, organ failure, even death. Recent studies have preliminarily demonstrated the therapeutic effectiveness of whole blood exchange (WBE) in the management of acute hemolytic anemia and exhibited potential for reducing the duration of corticosteroid treatment, while the underlying mechanism of WBE therapy was not investigated in preclinical study. Hence, we investigate the therapeutic mechanisms of WBE in HA through established continued WBE therapy in rats creatively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!