A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Membrane topology of Salmonella invasion protein SipB confers osmotolerance. | LitMetric

Membrane topology of Salmonella invasion protein SipB confers osmotolerance.

Biochem Biophys Res Commun

Division of Biomedical Food Research, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan.

Published: October 2012

Salmonella enterica serovar Typhimurium is a major cause of human gastrointestinal illness worldwide. This pathogen can persist in a wide range of environments, making it of great concern to public health. Here, we report that the salmonella pathogenicity island (SPI)-1 effector protein SipB exhibits a membrane topology that confers bacterial osmotolerance. Disruption of the sipB gene or the invG gene (SPI-1 component) significantly reduced the osmotolerance of S. Typhimurium LT2. Biochemical assays showed that NaCl osmolarity increased the membrane topology of SipB, and a neutralising antibody against SipB reduced osmotolerance in the WT strain. The WT strain, but not the sipB mutant, exhibited elevated cyclopropane fatty acid C19:0 during conditions of osmotic stress, correlating with the observed levels of survival and membrane integrity. This result suggests a link between SipB and the altered fatty acid composition induced upon exposure to osmotic stress. Overall, our findings provide the first evidence that the Salmonella virulence translocon SipB affects membrane fluidity and alters bacterial osmotolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2012.09.012DOI Listing

Publication Analysis

Top Keywords

membrane topology
12
sipb
8
protein sipb
8
bacterial osmotolerance
8
reduced osmotolerance
8
fatty acid
8
osmotic stress
8
membrane
5
osmotolerance
5
salmonella
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!