Pigment epithelium-derived factor (PEDF) recombinant protein has been investigated in many kinds of solid tumors due to its potent antiangiogenic activity. However, the complexity of protein purification, instability of recombinant protein and requirement of repeated injections are obstacles for the recombinant PEDF therapy for solid tumors. We successfully synthesized polyethyleneglycol-polyetherimide (PEG-PEI) and cRGD-PEG-PEI which was coupled with a cyclic RGD peptide, a special ligand for integrin αvβ3 receptor, as the vehicle for PEDF gene therapy in this study. In vitro, the competitive binding assay showed that cRGD contributed to the enhanced gene transfection efficiency of PEG-PEI in human umbilical vein endothelial cells (HUVECs). PEDF gene delivered by cRGD-PEG-PEI apparently suppressed growth of tumor with a 67.4% reduction and decreased microvessel density in nude mice bearing SW620 human colorectal xenografts. Accordingly, SW620 tumors from cRGD-PEG-PEI/PEDF-pcDNA3.1 (+)-treated mice expressed more PEDF than that of the control groups. Our study demonstrated that cRGD-PEG-PEI transported the PEDF gene into endothelia cells more efficiently than PEG-PEI, resulting in more effective inhibitory effects on tumor growth by anti-angiogenesis. Therefore, for the first time, we have explored an effective non-viral vehicle for PEDF gene therapy by targeting endothelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2012.08.043DOI Listing

Publication Analysis

Top Keywords

pedf gene
16
endothelial cells
12
pigment epithelium-derived
8
epithelium-derived factor
8
targeting endothelial
8
recombinant protein
8
solid tumors
8
vehicle pedf
8
gene therapy
8
pedf
7

Similar Publications

Purpose: This review explores the role of pigment epithelium-derived factor (PEDF) in retinal degenerative and vascular disorders and assesses its potential both as an adjunct to established vascular endothelial growth factor inhibiting treatments for retinal vascular diseases and as a neuroprotective therapeutic agent.

Methods: A comprehensive literature review was conducted, focusing on the neuroprotective and anti-angiogenic properties of PEDF. The review evaluated its effects on retinal health, its dysregulation in ocular disorders, and its therapeutic application in preclinical models.

View Article and Find Full Text PDF

Probing the familial ties between serpin members Kallistatin and PEDF: A comparative analysis review.

Life Sci

December 2024

Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; China Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China; Guangdong Province Key Laboratory of Diabetology, Guangzhou 510080, China. Electronic address:

The serine protease inhibitors (Serpins) represent a diverse protein superfamily that holds paramount significance in governing vital pathophysiological processes. Their influence on critical biological pathways renders serpins highly coveted targets for drug discovery endeavors. Among the numerous members of this family, two distinct proteins, Kallistatin (encoded by the SERPINA4 gene) and Pigment Epithelium-Derived Factor (PEDF, encoded by the SERPINF1 gene), stand out as secreted proteins that are abundantly present in peripheral blood.

View Article and Find Full Text PDF

Purpose: Pigment epithelium-derived factor (PEDF) is a neurotrophic glycoprotein secreted by the retinal pigment epithelium (RPE) that supports retinal photoreceptor health. Deficits in PEDF are associated with increased inflammation and retinal degeneration in aging and diabetic retinopathy. We hypothesized that light-induced stress in C57BL/6J mice deficient in PEDF would lead to increased retinal neuronal and RPE defects, impaired expression of neurotrophic factor Insulin-like growth factor 1 (IGF-1), and overactivation of Galectin-3-mediated inflammatory signaling.

View Article and Find Full Text PDF

Multiple gene therapy as a tool for regulating the expression of molecules involved in neovascular age-related macular degeneration.

Prog Retin Eye Res

January 2025

Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.

Anti-vascular endothelial growth factor (VEGF) therapies have revolutionized the treatment of neovascular age-related macular degeneration (nAMD) and other retinal diseases. However, the necessity for repeated intravitreal injections and the observation of variable treatment responses calls for new treatment modalities where fewer and more effective interventions can result in a clinical effect. Gene therapy might be such an alternative, and therefore the development and clinical application of gene therapy aimed at modifying gene expression has received considerable attention.

View Article and Find Full Text PDF

Preeclampsia (PE) is a complex multisystem disease characterized by hypertension of sudden onset (>20 weeks' gestation) coupled with the presence of at least one additional complication, such as proteinuria, maternal organ dysfunction, or uteroplacental dysfunction. Hypertensive states during pregnancy carry life-threatening risks for both mother and baby. The pathogenesis of PE develops due to a dysfunctional placenta with aberrant architecture that releases factors contributing to endothelial dysfunction, an antiangiogenic state, increased oxidative stress, and maternal inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!