The interaction between one polychlorobiphenyl (3,3',4,4',-tetrachlorobiphenyl, coded PCB77) and the four DNA nucleic acid-base is studied by means of quantum mechanics calculations in stacked conformations. It is shown that even if the intermolecular dispersion energy is the largest component of the total interaction energy, some other contributions play a non negligible role. In particular the electrostatic dipole-dipole interaction and the charge transfer from the nucleobase to the PCB are responsible for the relative orientation of the monomers in the complexes. In addition, the charge transfer tends to flatten the PCB, which could therefore intercalate more easily between DNA base pairs. From these seminal results, we predict that PCB could intercalate completely between two base pairs, preferably between Guanine:Cytosine pairs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-012-1580-3 | DOI Listing |
ACS ES T Water
January 2025
University of Iowa Libraries, The University of Iowa, Iowa City, Iowa 52242, United States.
Data on dissolved phase water concentrations of polychlorinated biphenyls (PCBs) from 32 locations across the U.S. were compiled from reports, Web sites, and peer-reviewed papers, spanning 1979-2020, resulting in 5132 individual samples.
View Article and Find Full Text PDFSci Total Environ
January 2025
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:
Polychlorinated biphenyls (PCBs), a typical type of persistent organic pollutants (POPs), were previously widely employed as insulating and heat exchange fluids in transformers and capacitors. Despite knowledge of its adverse effects, the precise mechanism underlying PCB77 toxicity remains enigmatic. In this study, we utilized zebrafish as a model organism to explore the toxic effects of various concentrations of PCB77 (10, 200, and 1000 μg/L) and its molecular toxicity mechanisms.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Research and Development Center, Beijing Genetech Pharmaceutical Co., Ltd., Beijing 102200, People's Republic of China.
Understanding the folding mechanisms of multi-domain proteins is crucial for gaining insights into protein folding dynamics. The BphC enzyme, a key player in the degradation of polychlorinated biphenyls consists of eight identical subunits, each containing two domains, with each domain comprising two "βαβββ" motifs. In this study, we employed high-temperature molecular dynamics simulations to systematically analyze the unfolding dynamics of a BphC subunit.
View Article and Find Full Text PDFEnviron Health Perspect
December 2024
Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA.
Background: Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds that interfere with the normal function of the endocrine system and are linked to direct and inherited adverse effects in both humans and wildlife. Legacy EDCs such as polychlorinated biphenyls (PCBs) are no longer used yet remain detectable in biological specimens around the world; concurrently, we are exposed to newer EDCs like the fungicide vinclozolin (VIN). This combination of individuals' direct environmental chemical exposures and any heritable changes caused by their ancestors' chemical exposures leads to a layered pattern of both direct and ancestrally inherited exposures that might have cumulative effects over generations.
View Article and Find Full Text PDFMol Cell Biochem
December 2024
Department of Surgery I-Clinic of Surgical Semiotics & Thoracic Surgery, Center for Hepato-Biliary and Pancreatic Surgery, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, Eftimie Murgu Sq., No.2, 300041, Timișoara, Romania.
Obesity, diabetes, and their cardiovascular and hepatic comorbidities are alarming public health issues of the twenty-first century, which share mitochondrial dysfunction, oxidative stress, and chronic inflammation as common pathophysiological mechanisms. An increasing body of evidence links the combined exposure to multiple environmental toxicants with the occurrence and severity of metabolic diseases. Endocrine disruptors (EDs) are ubiquitous chemicals or mixtures with persistent deleterious effects on the living organisms beyond the endocrine system impairment; in particular, those known as metabolism-disrupting chemicals (MDCs), increase the risk of the metabolic pathologies in adult organism or its progeny.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!