Objective: To compare electromyographic (EMG), kinematic, kinetic, and ultrasound (US) features of pes plano valgus associated with US-confirmed tibialis posterior (TP) tenosynovitis in rheumatoid arthritis (RA) and healthy control subjects.

Methods: In this cross-sectional study, patients with RA and US-confirmed tenosynovitis of TP underwent gait analysis, including 3-dimensional kinematics, kinetics, and intramuscular EMG of TP, and findings were compared with a group of healthy individuals. The RA group also underwent B mode and power Doppler US scanning of the TP tendon to assess and score levels of pathology.

Results: Ten patients with RA, median (range) disease duration of 3 years (1-18 years), and 5 control subjects were recruited. Compared to control subjects, the RA patients walked slower and presented with moderate levels of foot-related disability. The mean ± SD Disease Activity Score in 28 joints was 4.6 ± 1.6. Increased magnitude of TP activity was recorded in the RA group compared to controls in the contact period of stance (P = 0.007), in conjunction with reduced ankle joint power (P = 0.005), reduced navicular height in the medial arch (P = 0.023), and increased forefoot dorsiflexion (P = 0.027). TP tendon thickening, fluid, and power Doppler signal were observed in the majority of patients.

Conclusion: This study has demonstrated, for the first time, increased TP EMG activity in the presence of US-confirmed TP tenosynovitis in RA. Altered muscle function occurred in conjunction with suboptimal mechanics, moderate levels of tendon pathology, and active disease. Targeted therapy may be warranted to reduce inflammation and mechanically off-load diseased tendon states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652033PMC
http://dx.doi.org/10.1002/acr.21859DOI Listing

Publication Analysis

Top Keywords

tibialis posterior
8
posterior tenosynovitis
8
pes plano
8
plano valgus
8
rheumatoid arthritis
8
ultrasound features
8
us-confirmed tenosynovitis
8
power doppler
8
control subjects
8
moderate levels
8

Similar Publications

Clonus is characterized by involuntary, rhythmic, oscillatory muscle contractions, typically triggered by rapid muscle stretching and is frequently associated with spastic equinovarus foot (SEVF), where it may increase risk of falls and cause discomfort, pain, and sleep disorders. We hypothesize that selective diagnostic nerve block (DNB) of the tibial nerve motor branches can help identify which muscle is primarily responsible for clonus in patients with SEVF and provide useful information for botulinum neurotoxin type A (BoNT-A) treatment. This retrospective study explored which calf muscles contributed to clonus in 91 patients with SEFV after stroke (n = 31), multiple sclerosis (n = 21), and cerebral palsy (n = 39), using selective DNB.

View Article and Find Full Text PDF

Purpose: To compare graft remodeling, as measured by magnetic resonance imaging (MRI), and clinical outcomes between patients who underwent isolated anterior cruciate ligament reconstruction (ACLR) versus combined anterior cruciate ligament and anterolateral ligament reconstruction (ACLR + ALLR).

Methods: A retrospective review was conducted on patients who underwent primary ACLR with quadruple hamstring grafts between January 2019 and March 2022, with a minimum follow-up period of 2 years. Patients were categorized into two groups based on the addition of ALLR with tibialis anterior allografts: an isolated ACLR group and an ACLR + ALLR group.

View Article and Find Full Text PDF

Introduction/aims: Skeletal muscle magnetic resonance imaging (MRI) is a validated noninvasive tool to assess Duchenne muscular dystrophy (DMD) progression. There is interest in finding DMD biomarkers that decrease the burden of clinical trial participation, such as wearable devices. Our aim was to evaluate the relationship between activity, via accelerometry, and skeletal muscle MRI, particularly T mapping.

View Article and Find Full Text PDF

Introduction: Lumbar transcutaneous spinal cord stimulation (TSS) evokes synchronized muscle responses, termed spinally evoked motor response (sEMR). Whether the structures TSS activates to evoke sEMRs differ when TSS intensity and waveform are varied is unknown.

Methods: In 15 participants (9F:6M), sEMRs were evoked by TSS over L1-L3 (at sEMR threshold and suprathreshold intensities) using conventional (one 400-µs biphasic pulse) or high-frequency burst (ten 40-µs biphasic pulses at 10 kHz) stimulus waveforms in vastus medialis (VM), tibialis anterior (TA) and medial gastrocnemius (MG) muscles.

View Article and Find Full Text PDF

Background: Gait initiation (GI) can be divided into three sections according to the center of pressure (COP) trace (S1, S2, and S3). Almost all studies do not separate each phase of the GI profile in postural control assessment and muscular investigation, whereas differences in the COP and muscles are found in each phase of the GI profile in people with gait problems.

Methods: Twenty individuals with CAI and twenty healthy controls were included in the present study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!