Time dilation caused by static images with implied motion.

Exp Brain Res

Graduate School of Human-Environment Studies, Kyushu University, 6-19-1 Hakozaki, Higashi-ku, Fukuoka-shi, Fukuoka 812-8581, Japan.

Published: November 2012

The present study examined whether implicit motion information from static images influences perceived duration of image presentation. In Experiments 1 and 2, we presented observers with images of a human and an animal character in running and standing postures. The results revealed that the perceived presentation duration of running images was longer than that of standing images. In Experiments 3 and 4, we used abstract block-like images that imitated the human figures used in Experiment 1, presented with different instructions to change the observers' interpretations of the stimuli. We found that the perceived duration of the block image presented as a man running was longer than that of the image presented as a man standing still. However, this effect diminished when the participants were told the images were green onions (objects with no implied motion), suggesting that the effect of implied motion cannot be attributed to low-level visual differences. These results suggest that implied motion increases the perceived duration of image presentation. The potential involvement of higher-order motion processing and the mirror neuron system is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-012-3259-5DOI Listing

Publication Analysis

Top Keywords

implied motion
16
perceived duration
12
static images
8
duration image
8
image presentation
8
image presented
8
presented man
8
images
7
motion
6
time dilation
4

Similar Publications

Stress echocardiography has evolved from the sole assessment of regional wall motion abnormalities (RWMAs) to the ABCDE protocol, as recommended by the recent clinical consensus statement from the European Association of Cardiovascular Imaging, reflecting the need for a more systematic patient assessment. Steps A, B, C, D, and E assess RWMAs, lung B-lines, left ventricular contractile reserve, coronary flow velocity reserve (CFVR) in mid-distal left anterior descending artery, and heart rate reserve, respectively. Impairment of CFVR is considered as the earliest abnormality in the ischaemic cascade.

View Article and Find Full Text PDF

Breast cancer remains a significant challenge in oncology, highlighting the need for alternative therapeutic strategies that target necroptosis to overcome resistance to conventional therapies. Recent investigations into natural compounds have identified 8,12-dimethoxysanguinarine (SG-A) from Eomecon chionantha as a potential necroptosis inducer. This study presents the first computational exploration of SG-A interactions with key necroptotic proteins-RIPK1, RIPK3, and MLKL-through molecular docking, molecular dynamics (MD), density functional theory (DFT), and molecular electrostatic potential (MEP) analyses.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to analyze how antiphase trunk motion affects quiet stance stability without changes in visual or surface conditions.
  • Wearing a rigid orthotic brace that limited trunk motion, researchers compared sway characteristics across different brace conditions.
  • Findings revealed that allowing antiphase motion reduced trunk and leg sway velocities and highlighted the relationship between trunk movement and ankle torque, suggesting that this motion is crucial for maintaining balance, especially in predicting postural issues due to various factors.
View Article and Find Full Text PDF

Background: Simultaneous and proportional control (SPC) based on surface electromyographic (sEMG) signals has emerged as a research hotspot in the field of human-machine interaction (HMI). However, the existing continuous motion estimation methods mostly have an average Pearson coefficient (CC) of less than 0.85, while high-precision methods suffer from the problem of long inference time (> 200 ms) and can only estimate SPC of less than 15 hand movements, which limits their applications in HMI.

View Article and Find Full Text PDF

Challenges in Describing Tremor and Dystonia.

Neurology

January 2025

Departments of Neurology, Human Genetics and Pediatrics, Emory University, Atlanta, GA.

Tremor is defined as an oscillatory and rhythmical movement. By contrast, dystonia is defined by sustained or intermittent abnormal postures, repetitive movements, or both. Tremor and dystonia often coexist in the same individual.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!