Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The electronic properties of graphene depend critically on its lattice orientation and edge type. However, it is very difficult to identify them, and they are accessible only using sophisticated tools. In this paper, we show an easy and reliable way to reveal the lattice orientation and edge type of graphene and graphite flakes, i.e. multi-layered graphene. Nematic liquid crystals have the potential to align themselves into three symmetric and equivalent orientations on crystalline graphite. The director of macroscopic texture due to the elasticity indicates the lattice orientation of the top graphite layer. By analyzing the director orientation using a polarizing optical microscope, we were able to show the lattice orientation, chiral angle and edge type of graphene and graphite flakes on the macroscopic scale. As liquid crystals are soft and easily removable, our technique has little chance of influencing the following processes for graphene manipulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/23/39/395704 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!