Regular configurationally alternating amino acid sequences generate cyclic and linear helical peptides with a local β-conformation able to self-assemble in nanowires and nanoscaffolds directed and stabilized by hydrogen bonds. The possibility of modulating the chemical profile of the various amino acid residues containing reactive side chains means that peptides could be flexible templates for creating various building blocks. A method for the design of molecules with potential spintronic properties is described. Peptides containing lysine residues, the side chains of which are bridged through the formation of metal chelates via Schiff bases, could provide stable molecular channels. When metal chelates with high electron spin states are used, their coupling could generate materials that are interesting due to their magnetic properties as well as for the patterning of nanometric lattices driven by their orientation under a magnetic field. With this aim, three alternating D- and L-lysine-containing octapeptides are synthesized and the formation of their bis(pyridoxalaldimine) copper(II) chelate derivatives is shown by absorption and circular dichroism spectroscopies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/23/39/395703DOI Listing

Publication Analysis

Top Keywords

metal chelates
12
amino acid
8
side chains
8
chelates anchored
4
anchored poly-l-peptides
4
poly-l-peptides linear
4
linear dl-α-peptides
4
dl-α-peptides promising
4
promising nanotechnological
4
nanotechnological applications
4

Similar Publications

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

[Tc]Technetium and Rhenium Dithiocarbazate Complexes: Chemical Synthesis and Biological Assessment.

Pharmaceutics

January 2025

Laboratory of Nuclear Medicine (LIM-43), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-911, SP, Brazil.

Background/objectives: Dithiocarbazates (DTCs) and their metal complexes have been studied regarding their property as anticancer activities. In this work, using S-benzyl-5-hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H-pirazol-1-carbodithionate (Hbdtc), we prepared [ReO(bdtc)(Hbdtc)] and [[Tc]TcO(bdtc)(Hbdtc)] complexes for tumor uptake and animal biodistribution studies.

Methods: Re complex was prepared by a reaction of H2bdtc and (NBu)[ReOCl], the final product was characterized by IR, H NMR, CHN, and MS-ESI.

View Article and Find Full Text PDF

Histology Assessment of Chitosan-Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles.

Molecules

January 2025

Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.

Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion.

View Article and Find Full Text PDF

The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter cobalt-58m (Co) and the Positron Emission Tomography-isotope cobalt-55 (Co) would be of great interest for creating novel radiopharmaceuticals for prostate cancer and glioblastoma theranostics. In this study, GE11 (YHWYGYTPQNVI) was investigated for its EGFR-targeting potential when conjugated using click chemistry to N1-((triazol-4-yl)methyl)-N1,N2,N2-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (TZTPEN).

View Article and Find Full Text PDF

The scientific interest in the chemical modification of chitosan to increase its solubility and application has led to its conjugation with Schiff bases, which are interesting scaffolds endowed with diverse biological properties. The resultant chitosan-based Schiff bases (CSBs) are widely studied in scientific literature due to the myriad of activities exerted, both catalytic and biological, including anticancer, anti-inflammatory, antioxidant, and especially antimicrobial ones. Antimicrobial resistance (AMR) is one of the major public health challenges of the twenty-first century because it represents a threat to the prevention and treatment of a growing number of bacterial, parasitic, viral, and fungal infections that are no longer treatable with the available drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!