New carbosilane polymers with interacting ferrocenes as support and bioelectrocatalysts of oxidases to develop versatile and specific amperometric biodevices.

Appl Biochem Biotechnol

Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid, Spain.

Published: December 2012

In this work, the bioelectrocatalytical properties and kinetic characteristics of new oxidase amperometric biosensors based on two different ferrocene functionalized carbosilane polymers, polydiallylmethylsilane (PDAMS) and polymethyldiundecenylsilane (PMDUS) are described. In the development of these biodevices, glucose oxidase has been used as example of oxidase enzyme, and two different immobilization procedures have been studied. The polymer-modified electrodes act as efficient transducers for glucose sensing in anodic and cathodic aerobic conditions and also in anodic anaerobic conditions, and this fact turns them into useful devices for a wide field of applications. PMDUS has shown to be the bioelectrocatalyst with best kinetic and analytical properties in aerobic media while PDAMS was better in anaerobic conditions. The best aerobic biosensor developed displayed a strictly linear range from 0 to 3.0 mM, a detection limit of 7.8 μM and a response time less than 2 s in an ascorbate interference free work potential interval. The apparent Michaelis-Menten constant was calculated to be 1.36 mM according to the Lineweaver-Burk equation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-012-9896-0DOI Listing

Publication Analysis

Top Keywords

carbosilane polymers
8
anaerobic conditions
8
polymers interacting
4
interacting ferrocenes
4
ferrocenes support
4
support bioelectrocatalysts
4
bioelectrocatalysts oxidases
4
oxidases develop
4
develop versatile
4
versatile specific
4

Similar Publications

Molecular interactions driving the complexation of rose bengal by triazine-carbosilane dendrons.

Nanoscale

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Amphiphilic dendrons or Janus dendrimers self-assembling into nanoscale vesicles offer promising avenues for drug delivery. Triazine-carbosilane dendrons have shown great potential for the intracellular delivery of rose bengal, additionally enhancing its phototoxic activity through non-covalent interactions. Thus, understanding the complexation dynamics between dendrons and photosensitizers is crucial for the development of efficient drug carriers.

View Article and Find Full Text PDF

Acanthamoeba species are responsible for serious human infections, including Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). These pathogens have a simple life cycle consisting of an infective trophozoite stage and a resistant cyst stage, with cysts posing significant treatment challenges due to their resilience against harsh conditions and chemical agents. Current treatments for AK often involve combining diamines, such as propamidine, and biguanides, such as chlorhexidine (CLX), which exhibit limited efficacy and significant toxicity.

View Article and Find Full Text PDF

Here, we present a modular synthesis as well as physicochemical and biological evaluation of a new series of amphiphilic dendrons carrying triphenylphosphonium groups at their periphery. Within the series, the size and mutual balance of lipophilic and hydrophilic domains are systematically varied, changing the dendron shape from cylindrical to conical. In physiological solution, the dendrons exhibit very low critical micelle concentrations (2.

View Article and Find Full Text PDF

Ruthenium(II) complexes containing PEGylated N-heterocyclic carbene ligands for tunning biocompatibility in the fight against cancer.

J Inorg Biochem

January 2025

University of Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Madrid 28034, Spain. Electronic address:

A synthetic procedure was designed for the preparation and characterization of Ag and Ru complexes containing NHC ligands functionalized with PEG fragments. Stability studies were conducted to gain insight of the species in water and other solvents like DMSO, or with reagents like imidazole as representative group for histidine amino acid. The presence of Cl atoms instead of H in the 4,5 positions of the N-heterocyclic carbene afforded higher water stability.

View Article and Find Full Text PDF

Effect of polyphenolic dendrimers on biological and artificial lipid membranes.

Chem Phys Lipids

November 2024

University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland; Mazovian Academy in Plock, Collegium Medicum, Faculty of Medicine, Pl. Dabrowskiego 2, Plock 09-402, Poland.

The use of dendrimers as nanovectors for nucleic acids or drugs requires the understanding of their interaction with biological membranes. This study investigates the impact of 1st generation polyphenolic carbosilane dendrimers on biological and model lipid membranes using several biophysical methods. While the increase in the z-average size of DMPC/DPPG liposomes correlated with the number of caffeic acid residues included in the dendrimer structure, dendrimers that contained polyethylene glycol chains generated lower zeta potential when interacting with a liposomal membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!