This study has examined whether adverse halothane effects on liver-cell energy metabolism are influenced by the availability of alternate substrates for energy-generating reactions. Halogenated volatile anesthetics affect both energy supply and energy demand in tissues, and cellular energy deficits have been implicated in anesthetic hepatotoxicity. Using hepatocytes isolated from fed rats either pretreated with phenobarbital or not treated (+PB or -PB cells, respectively), we studied the cellular energetic effects of providing fatty acid (oleic acid) along with glucose as substrate(s) for energy metabolism, while exposing the cells to 0%-2% halothane. In -PB cells incubated with glucose alone, there were halothane dose-related decreases in the oxygen (O2) consumption rate (VO2) and in the balance between adenosine triphosphate (ATP) supply and demand (ATP/ADP ratio), but no effect on lactate metabolism (lactate consumption or production) over the 10-min incubation period. Adding oleate along with glucose (a) raised VO2 but lowered ATP/ADP in the absence of halothane; (b) eliminated the decreases in VO2 and ATP/ADP seen when halothane was introduced; and (c) increased lactate consumption in both the presence and absence of halothane. In +PB cells, VO2 was higher, ATP/ADP lower, and lactate consumption also lower than in -PB cells under comparable conditions. Halothane or oleate effects, or both, on energy metabolism were thus qualitatively similar in +PB and -PB cells, except that in +PB cells incubated without oleate, lactate formation developed as halothane was increased from 0% to 2%, reflecting activation of glycolysis due to insufficient mitochondrial ATP production.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1213/00000539-199001000-00005DOI Listing

Publication Analysis

Top Keywords

energy metabolism
16
-pb cells
16
lactate consumption
12
fatty acid
8
halothane
8
+pb -pb
8
cells incubated
8
absence halothane
8
+pb cells
8
energy
7

Similar Publications

Background: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).

View Article and Find Full Text PDF

Purpose Of Review: Metabolic dysfunction-associated steatotic liver disease (MASLD) is present in 25-35% of individuals in the United States. The purpose of this review is to provide the contextual framework for hepatic ketogenesis in MASLD and to spotlight recent advances that have improved our understanding of the mechanisms that drive its development and progression.

Recent Findings: Traditionally, hepatic ketogenesis has only been considered metabolically during prolonged fasting/starvation or with carbohydrate deplete ketogenic diets where ketones provide important alternative energy sources.

View Article and Find Full Text PDF

Reduced lipid and glucose oxidation and reduced lipid synthesis in AMPKα2 myotubes.

Arch Physiol Biochem

January 2025

Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.

View Article and Find Full Text PDF

Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT.

View Article and Find Full Text PDF

Mitochondrial SIRT2-mediated CPT2 deacetylation prevents diabetic cardiomyopathy by impeding cardiac fatty acid oxidation.

Int J Biol Sci

January 2025

Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Dysregulated energy metabolism, particularly lipid metabolism disorders, has been identified as a key factor in the development of diabetic cardiomyopathy (DCM). Sirtuin 2 (SIRT2) is a deacetylase involved in the regulation of metabolism and cellular energy homeostasis, yet its role in the progression of DCM remains unclear. We observed significantly reduced SIRT2 expression in DCM model mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!