Radiation lung injury is a common side-effect of pulmonary radiotherapy. The aim of this study was to quantitatively assess early changes in lung perfusion single photon emission computed tomography (SPECT) scanning and pulmonary function testing (PFT) prior to and after intensity modulated radiotherapy (IMRT) for patients suffering from locally advanced non-small cell lung cancer (LANSCLC). Twenty patients with LANSCLC received lung perfusion SPECT scanning and PFT prior to IMRT and immediately after IMRT. Lung perfusion index (LPI) was calculated after the quantification of perfusion SPECT images. The LPI of the two groups was analyzed by matched t-test. The radioactive count of each layer of single lung was added to obtain the sum of the irradiated area. The percentage of the irradiated area of single lung was calculated. Linear correlation analysis was carried out between the percentage of the irradiated area and LPI in order to verify the validity of LPI. In this study, LPI and the percentage of the irradiated area of single lung exhibited an excellent correlation either prior to or after IMRT (r=0.820 and r=0.823, respectively; p<0.001). There was no statistically significant difference between pre-IMRT LPI and post-IMRT LPI (p=0.135). LPI in the group receiving a radical dose had no statistically significant difference (p=0.993), however, it showed a statistically significant difference in the group receiving a non-radical dose (p=0.025). In the non-radical dose group, the post-IMRT LPI was larger compared to pre-IMRT. None of the parameters of PFT exhibited a statistically significant difference prior to and after IMRT (p>0.05). The quantitative method of lung perfusion SPECT scanning can be used to evaluate changes in perfusion early in patients receiving a non-radical dose (BED ≤126,500 cGy) IMRT. Evaluating early changes in global lung function using the current method of PFT is difficult, since time can be a contributing factor for radiation-induced lung injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438855PMC
http://dx.doi.org/10.3892/etm.2012.468DOI Listing

Publication Analysis

Top Keywords

lung perfusion
20
perfusion spect
16
spect scanning
16
irradiated area
16
lung
14
lung injury
12
single lung
12
percentage irradiated
12
scanning pulmonary
8
pulmonary function
8

Similar Publications

Purpose: Pulmonary perfusion imaging is a key lung health indicator with clinical utility as a diagnostic and treatment planning tool. However, current nuclear medicine modalities face challenges like low spatial resolution and long acquisition times which limit clinical utility to non-emergency settings and often placing extra financial burden on the patient. This study introduces a novel deep learning approach to predict perfusion imaging from non-contrast inhale and exhale computed tomography scans (IE-CT).

View Article and Find Full Text PDF

Background: While patients are assessed for their ability to tolerate surgery through physiologic evaluations such as pulmonary function tests, ventilation-perfusion scans, and exercising testing, some patients still require home oxygen therapy after pulmonary resection. It is not well understood what the associated risk factors are, how long patients need supplemental oxygen, and if this requirement is associated with worse long-term outcomes. Given these knowledge gaps, we sought to conduct a systematic review of pulmonary resections and new postoperative home oxygen requirement.

View Article and Find Full Text PDF

Unlabelled: Pulmonary vein (PV) stenosis is a rare complication following PV isolation (PVI) for atrial fibrillation. Despite the benefit of early intervention, screening is not conducted, emphasizing the importance of maintaining a high index of suspicion. Standardized management approaches are unavailable for this serious complication.

View Article and Find Full Text PDF

Thoraco Abdominal Normothermic Regional Perfusion and Lung Transplantation - Is it a Safe Match?

J Heart Lung Transplant

January 2025

Consultant Cardiothoracic & Transplant Surgeon, Surgical Director Transplantation and Mechanical Circulatory Support, Royal Papworth Hospital, United Kingdom, UK. Electronic address:

View Article and Find Full Text PDF

A novel dual fixation method for improving the reliable assessment of pulmonary vascular morphology in pulmonary hypertension rats.

Respir Res

January 2025

Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.

This study introduced a novel dual fixation method for the pulmonary vasculature and lung tissue in pulmonary hypertension (PH) rats, addressing the limitations of traditional fixation methods that failed to accurately preserve the in vivo status of pulmonary vascular morphology. The modified method involved a dual fixation process, combining individualized ventilation support and vascular perfusion to simulate the respiratory motion, pulmonary artery pressure and right ventricular output of the rat under in vivo conditions. Utilizing a monocrotaline-induced PH rat model, this study compared the dual fixation with the traditional immersion fixation, focusing on the quantitative assessment of alveolar expansion degree, capillary patency, endothelial cell quantity and wall thickness of pulmonary vein and artery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!