BACKGROUND/AIMS: There are important sex-related differences in the prevalence of obesity, type 2 diabetes mellitus and cardiovascular disease. Indeed, premenopausal women have a lower prevalence of these conditions relative to age-matched men. Estrogen participates in the modulation of insulin sensitivity, energy balance, and body composition. In this paper, we investigated the impact of estrogen signaling through estrogen receptor α (ERα) on systemic insulin sensitivity and insulin signaling in skeletal muscle. METHODS: In 14- and 30-week-old female ERα knockout (ERαKO) mice and age-matched controls, we assessed insulin sensitivity by a euglycemic-hyperinsulinemic clamp and intraperitoneal glucose tolerance testing. Blood pressure was evaluated by tail cuff and telemetry. We studied ex vivo insulin-stimulated glucose uptake in skeletal muscle tissue, as well as insulin metabolic signaling molecule phosphorylation by immunoblotting and oxidative stress by immunostaining for 3-nitrotyrosine. RESULTS: Body weight was higher in ERαKO mice at 14 and 30 weeks of age. At 30 weeks, intraperitoneal glucose tolerance testing and clamp results demonstrated impaired systemic insulin sensitivity in ERαKO mice. Insulin-stimulated glucose uptake in soleus was lower in ERαKO mice at both ages. The insulin receptor substrate 1/phosphatidylinositol 3-kinase association and the activation of protein kinase B were decreased in ERαKO mice, whereas immunostaining for 3-nitrotyrosine was increased. CONCLUSIONS: Our data demonstrate a critical age-dependent role for estrogen signaling through ERα on whole-body insulin sensitivity and insulin metabolic signaling in skeletal muscle tissue. These findings have potential translational implications for the prevention and management of type 2 diabetes mellitus and cardiovascular disease in women, who are at increased risk for these conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433027 | PMC |
http://dx.doi.org/10.1159/000339563 | DOI Listing |
Diabetes Obes Metab
January 2025
Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University, Rome, Italy.
Aims: To date, bariatric surgery (BS) is the most effective long-term treatment for obesity, but weight regain (WR) is common. The very low-calorie ketogenic diet (VLCKD) is effective for weight loss and may influence gut microbiota (GM) composition, but it has been scarcely evaluated in post-bariatric patients. This study compared the efficacy and safety of a VLCKD in patients with WR post-bariatric surgery (BS+) and in bariatric surgery-naïve patients (BS-).
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Panjab, 144001, India.
Diabetes Mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia and poses significant global health challenges. Conventional treatments, such as insulin therapy and lifestyle modifications, have shown limited efficacy in addressing the multifactorial nature of DM. Emerging evidence suggests that gut microbiota, a diverse community of microorganisms critical for metabolism and immune function, plays a pivotal role in metabolic health.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.
Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Biochemistry, KVG Medical College and Hospital, Sullia 574327, India.
Type 2 Diabetes Mellitus (T2DM) is an etiologically diverse metabolic dysfunction that, if untreated, leads to chronic hyperglycemia. Understanding the etiology of T2DM is critical, as it represents one of the most formidable medical challenges of the twenty-first century. Traditionally, insulin resistance has been recognized as the primary risk factor and a well-known consequence of type 2 diabetes.
View Article and Find Full Text PDFCureus
December 2024
Pharmacy, Punjab University College of Pharmacy, Lahore, PAK.
Berardinelli-Seip congenital lipodystrophy (BSCL), also known as congenital generalized lipodystrophy (CGL), is an exceptionally rare autosomal recessive disorder marked by a significant deficiency of adipose tissue throughout the body. This lack of adipose tissue, normally found beneath the skin and between internal organs, leads to impaired adipocyte formation and fat storage, causing lipids to accumulate in atypical tissues such as muscles and the liver. The extent of adipose tissue loss directly influences the severity of symptoms, which can include a muscular appearance, increased appetite, bone cysts, marrow fat depletion, acromegalic features, severe insulin resistance, skeletal muscle hypertrophy, hypertrophic cardiomyopathy, hepatic steatosis, hepatomegaly, cirrhosis, and intellectual disability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!