The asymmetric unit of the title compound, [Cu(C(21)H(24)N(2)O(2))]·H(2)O, comprises half of a Schiff base complex and half of a water mol-ecule. The whole compound is generated by crystallographic twofold rotation symmetry. The geometry around the Cu(II) atom, located on a twofold axis, is distorted square-planar, which is supported by the N(2)O(2) donor atoms of the coordinating Schiff base ligand. The dihedral angle between the symmetry-related benzene rings is 47.5 (4)°. In the crystal, the water mol-ecule that is hydrogen bonded to the coordinated O atoms links the mol-ecules via O-H⋯O inter-actions into chains parallel to [001]. The crystal structure is further stabilized by C-H⋯π inter-actions, and by π-π inter-actions involving inversion-related chelate rings [centroid-centroid distance = 3.480 (4) Å].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435595 | PMC |
http://dx.doi.org/10.1107/S1600536812034502 | DOI Listing |
Anal Chem
January 2025
Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China.
A novel sensing platform was constructed for the recognition and identification of dihydroxybenzene isomers based on the MOF-0.02TEA fluorescence sensor with the morphology of nanosheet microspheres through coordination modulation. Based on the sensing principle that the amino group on the MOF-0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
Synthesized 3,4-Diaminothieno[2,3-b]thiophene-2,5-dicarbohydrazide (DTT) Schiff base derivatives newly were synthesized by attaching with different aldehydes, deposited in thin film form by thermal evaporation technique, and characterized by UV-Visible-NIR spectroscopy, FT-IR, NMR, and elemental analysis. It is revealed that compound 4 has the highest absorption peak intensity at 586 nm. The allied absorption, dielectric, and dispersion parameters have been calculated and discussed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China. Electronic address:
Bacterial infections and inflammation severely impede wound healing. Here, we developed a zwitterionic hydrogel incorporating MOF/GOx for pH-responsive, controlled drug release. The multifunctional hydrogel embedded with MOF/GOx was successfully prepared through the Schiff base reaction between the copolymer poly[(2-methacryloyloxyethyl phosphorylcholine)-co-(4-formylphenyl methacrylate)] (PMF) and the branched polyethylenimine (PEI) modified by the zwitterionic monomer ((4-hydroxyphenyl)sulfonyl)(4-(trimethylammonio)butanoyl)amide (AB), which possessed excellent injectable and self-healing ability, a highly sensitive and reversible responsiveness to pH changes, and good biocompatibility.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. Electronic address:
The management of bacterial wounds presents a significant challenge in the field of medicine and poses a grave threat to public health. Traditional gauze materials exhibit limited efficacy in treating bacterial infection wounds, while antibiotics demonstrate cytotoxicity and resistance. Therefore, in this study, the peptide biomimetic polymer (PAL-BA) was designed and served as the antibacterial framework for constructing an antibiotic drug-free antibacterial hydrogel dressing through a Schiff base reaction with oxidized hyaluronic acid (OHA).
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Biophysics Institute, CNR-IBF, Via Corti 12, I-20133, Milano, Italy; Department of Bioscience, University of Milan, Via Celoria 26, I-20133, Milano, Italy. Electronic address:
Aldolases are crucial enzymes that catalyze the formation of carbon-carbon bonds in the context of the anabolic and catabolic pathways of various metabolites. The bacterium Pseudomonas fluorescens N3 can use naphthalene as its sole carbon and energy source by using, among other enzymes, the trans-o-hydroxybenzylidenepyruvate (tHBP) hydratase-aldolase (HA), encoded by the nahE gene. In this study, we present the crystallographic structures of tHBP-HA in three different functional states: the apo enzyme with a phosphate ion in the active site, and the Schiff base adduct bound either to pyruvate or to the substitute with '(R)-4-hydroxy-4-(2-hydroxyphenyl)-2-oxobutanoate'(intermediate state).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!