The benefits of ever-growing numbers of sequenced eukaryotic genomes will not be fully realized until we learn to decipher vast stretches of noncoding DNA, largely composed of transposable elements. Transposable elements persist through self-replication, but some genes once encoded by transposable elements have, through a process called molecular domestication, evolved new functions that increase fitness. Although they have conferred numerous adaptations, the number of such domesticated transposable element genes remains unknown, so their evolutionary and functional impact cannot be fully assessed. Systematic searches that exploit genomic signatures of natural selection have been employed to identify potential domesticated genes, but their predictions have yet to be experimentally verified. To this end, we investigated a family of domesticated genes called MUSTANG (MUG), identified in a previous bioinformatic search of plant genomes. We show that MUG genes are functional. Mutants of Arabidopsis thaliana MUG genes yield phenotypes with severely reduced plant fitness through decreased plant size, delayed flowering, abnormal development of floral organs, and markedly reduced fertility. MUG genes are present in all flowering plants, but not in any non-flowering plant lineages, such as gymnosperms, suggesting that the molecular domestication of MUG may have been an integral part of early angiosperm evolution. This study shows that systematic searches can be successful at identifying functional genetic elements in noncoding regions and demonstrates how to combine systematic searches with reverse genetics in a fruitful way to decipher eukaryotic genomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435246 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1002931 | DOI Listing |
Plants (Basel)
January 2025
Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada.
Stinging nettles () have a long history of association with human civilization, having been used as a source of textile fibers, food and medicine. Here, we present a chromosome-level, phased genome assembly for a diploid female clone of from Romania. Using a combination of PacBio HiFi, Oxford Nanopore, and Illumina sequencing, as well as Hi-C long-range interaction data (using a novel Hi-C protocol presented here), we assembled two haplotypes of 574.
View Article and Find Full Text PDFGenes Dev
January 2025
Institute for Research on Cancer and Aging of Nice (IRCAN), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), University Cote d'Azur, Nice 06107, France
Long interspersed element-1 (LINE-1) retrotransposons are abundant transposable elements in mammals and significantly influence chromosome structure, chromatin organization, and 3D genome architecture. In this issue of , Ataei et al. (doi:10.
View Article and Find Full Text PDFJ Exp Bot
January 2025
School of Biosciences, University of Birmingham, Birmingham, UK.
Plants host a range of DNA elements capable of self-replication. These molecules, usually associated to the activity of transposable elements or viruses, are found integrated in the genome or in the form of extrachromosomal DNA. The activity of these elements can impact genome plasticity by a variety of mechanisms, including the generation of structural variants, the shuffling of regulatory or coding DNA sequences across the genome, and DNA endoduplication.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
Transposable elements (TEs) are significant drivers of genome evolution, yet their recent dynamics and impacts within and among species, as well as the roles of host genes and non-coding RNAs in the transposition process, remain elusive. With advancements in large-scale pan-genome sequencing and the development of open data sharing, large-scale comparative genomics studies have become feasible. Here, we performed complete de novo TE annotations and identified active TEs in 310 plant genome assemblies across 119 species and seven crop populations.
View Article and Find Full Text PDFMed Microbiol Immunol
January 2025
Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
\nKlebsiella pneumoniae is a common pathogen of healthcare-associated infections expressing a plethora of antimicrobial resistance loci, including ADP-ribosyltransferase coding genes (arr), able to mediate rifampicin resistance. The latter has activity against a broad range of microorganisms by inhibiting DNA-dependent RNA polymerases. This study aims to characterise the arr distribution and genetic context in 138 clinical isolates of K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!