Nanoparticles are a major product from the nanotechnology industry and have been shown to have a potentially large environmental exposure and hazard. In this study, sterically stabilised polyvinyl pyrrolidone (PVP) 7 nm gold nanoparticles (NPs) were produced and characterised as prepared by surface plasmon resonance (SPR), size and aggregation, morphology and surface charge. Changes in these properties with changes in environmentally relevant conditions (pH, ionic strength, Ca concentration and fulvic acid presence) were quantified. These sterically stabilised NPs showed no aggregation with changes in pH or inorganic ions, even under high (0.1 M) Ca concentrations. In addition, the presence of fulvic acid resulted in no observable changes in SPR, size, aggregation or surface chemistry, suggesting limited interaction between the PVP stabilised nanoparticles and fulvic acid. Due to the lack of aggregation and interaction, these NPs are expected to be highly mobile and potentially bioavailable in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2012.07.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!