The aims were to investigate whether oocyte-secreted growth factors from a high (i.e. rat) and low (i.e. sheep) ovulation rate species could stimulate (3)H-thymidine incorporation in granulosa cells (GC) from antral follicles from the same or across species. Denuded oocytes (DO) were co-incubated with GC with or without specific antibodies to growth differentiating factor 9 (GDF9) or bone morphogenetic protein 15 (BMP15). Co-incubations of DO-GC from the same or across species significantly increased thymidine incorporation in GC with increasing numbers of DO. GDF9 immuno-neutralisation reduced thymidine incorporation in rat GC co-incubated with either rat or ovine DO and in ovine GC co-incubated with ovine or rat DO. BMP15 immuno-neutralisation only reduced thymidine incorporation when ovine DO were co-incubated with either ovine or rat GC. Western blotting of oocytes co-incubated with GC identified GDF9 and BMP15 proteins for sheep and GDF9 protein for rats in oocyte lysates and incubation media. With respect to rat BMP15, a promature protein was identified in the oocyte lysate but not in media. Expression levels of GDF9 relative to BMP15 mRNA in DO co-incubated with GC were highly correlated (R (2)=0.99) within both species. However, the expression ratios were markedly different for the rat and sheep (4.3 vs 1.0 respectively). We conclude that during follicular development, rat oocytes secrete little, if any, BMP15 and that GDF9 without BMP15 can stimulate proliferation of rat and ovine GC. In contrast, ovine oocytes secrete both BMP15 and GDF9, and both were found to stimulate proliferation in ovine and rat GC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/REP-12-0267 | DOI Listing |
Molecules
December 2024
Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
Pronucleotides, after entering the cell, undergo chemical or enzymatic conversion into nucleotides with a free phosphate residue, and the released nucleoside 5'-monophosphate is then phosphorylated to the biologically active form, namely nucleoside 5'-triphosphate. The active form can inhibit HIV virus replication. For the most effective therapy, it is necessary to improve the transport of prodrugs into organelles.
View Article and Find Full Text PDFAngiogenesis
December 2024
Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Hospital, Maastricht University, Maastricht, The Netherlands.
In contrast to the extensive evidence from animal studies, only few human data are available on the relation of vascular growth factors and collateral function as well as on the conditions which may modify their release or function. In 31 patients with total coronary occlusion (TCOs) blood was collected from distal to the occlusion site (collateral circulation) and from the aortic root (systemic circulation). Serum was used to assess its mitogenic potential in [H]-thymidine incorporation assay on human umbilical vein endothelial cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
Pharmaceuticals (Basel)
November 2024
Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile.
: Oxidized low-density lipoprotein (ox-LDL) is a proinflammatory particle associated with various diseases and affects cell proliferation and viability in multiple cell types. However, its impact on intestinal epithelial cells remains underexplored. This study investigates the effect of ox-LDL on colonic epithelial cell proliferation and viability, as well as the underlying mechanisms involved.
View Article and Find Full Text PDFCereb Cortex
November 2024
Brain Function Laboratory, National Institute of Genetics, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!