The recently proposed concept of automatic in-syringe dispersive liquid-liquid microextraction was successfully applied to the determination of copper in environmental water samples. Bathocuproine was added to the organic phase as a selective reagent, resulting in the formation of a complex with copper. Dispersion was achieved by aspiration of the organic phase and then the watery phase into the syringe as rapidly as possible. After aggregation of the solvent droplets at the head of the syringe, the organic phase was pushed into a liquid waveguide capillary cell for highly sensitive spectrophotometric detection. The entire analytical procedure was carried out automatically on a multisyringe flow-injection analysis platform and a copper determination was accomplished in less than 220 s. A limit of detection of 5 nmol L(-1) was achieved at an extraction efficiency >90% and a preconcentration factor of 30. A linear working range for concentrations of up to 500 nmol L(-1) and an average standard deviation of 7% in peak height were found. The method proved to be well-suited for the determination of copper in water samples, with an average analyte recovery of 100.6%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2012.05.063DOI Listing

Publication Analysis

Top Keywords

determination copper
12
organic phase
12
in-syringe dispersive
8
dispersive liquid-liquid
8
liquid-liquid microextraction
8
spectrophotometric detection
8
water samples
8
nmol l-1
8
copper
5
automatic determination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!