Environmental fate model for ultra-low-volume insecticide applications used for adult mosquito management.

Sci Total Environ

Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, MT 59717, USA.

Published: November 2012

One of the more effective ways of managing high densities of adult mosquitoes that vector human and animal pathogens is ultra-low-volume (ULV) aerosol applications of insecticides. The U.S. Environmental Protection Agency uses models that are not validated for ULV insecticide applications and exposure assumptions to perform their human and ecological risk assessments. Currently, there is no validated model that can accurately predict deposition of insecticides applied using ULV technology for adult mosquito management. In addition, little is known about the deposition and drift of small droplets like those used under conditions encountered during ULV applications. The objective of this study was to perform field studies to measure environmental concentrations of insecticides and to develop a validated model to predict the deposition of ULV insecticides. The final regression model was selected by minimizing the Bayesian Information Criterion and its prediction performance was evaluated using k-fold cross validation. Density of the formulation and the density and CMD interaction coefficients were the largest in the model. The results showed that as density of the formulation decreases, deposition increases. The interaction of density and CMD showed that higher density formulations and larger droplets resulted in greater deposition. These results are supported by the aerosol physics literature. A k-fold cross validation demonstrated that the mean square error of the selected regression model is not biased, and the mean square error and mean square prediction error indicated good predictive ability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2012.07.059DOI Listing

Publication Analysis

Top Keywords

insecticide applications
8
adult mosquito
8
mosquito management
8
validated model
8
predict deposition
8
regression model
8
k-fold cross
8
cross validation
8
density formulation
8
density cmd
8

Similar Publications

The cotton leafworm, Spodoptra littoralis, causes great damage to cotton crops. A new, safer method than insecticide is necessary for its control. Selenium nanoparticles (SeNPs) are metalloid nanomaterial, with extensive biological activities.

View Article and Find Full Text PDF

Diamide insecticides in PM: The unreported rural and urban air pollutants.

J Hazard Mater

December 2024

State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong. Electronic address:

The broad application of various pesticides guarantees the development of agriculture all over the word but has ultimately led to their ubiquitous release into the environment as hazardous chemical residues. Diamide insecticides (DAIs) are regarded as new choice for prevention and protection of agricultural crops and city landscaping plants from the pests in more and more countries. However, their presence in fine particulate matter (PM) and associated health risks have not been studied.

View Article and Find Full Text PDF

Taking the natural product cerbinal as the lead compound, 30 novel 5-aryl-cyclopenta[]pyridine derivatives were designed and synthesized based on the previous bioactivity studies of the cyclopenta[]pyridines. The modification of the position-5 of compound was achieved by amination, bromination, and cross coupling using cerbinal as the raw material. The results of the bioactivity tests demonstrated that partial compounds exhibited superior activity against plant viruses compared to compound .

View Article and Find Full Text PDF

Large-scale surveillance and informed vector control approaches are urgently needed to ensure that national malaria programs remain effective in reducing transmission and, ultimately, achieving malaria elimination targets. In South America, Anopheles darlingi is the primary malaria vector and is responsible for the majority of Plasmodium species transmission. However, little is known about the molecular markers associated with insecticide resistance in this species.

View Article and Find Full Text PDF

Neonicotinoid insecticides have been widely applied in modern agriculture to improve crop productivity, but their residues have adverse impacts on the environment and human health. Hence, to address these issues, a portable self-powered/colorimetric dual-mode sensing platform was developed for the simple, rapid, precise, and sensitive on-site detection of acetamiprid (ATM) residues in vegetables. In this case, a multifunctional bioconjugate with specific recognition capability, excellent enzyme-like activity, and loading capacity is the key to the sensing design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!