A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases.

J Control Release

Drug Delivery and Formulation, Medicinal Chemistry Platform, Ontario Institute for Cancer Research, 101 College Street, Suite 800, Toronto, Ontario M5G 0A3, Canada.

Published: September 2012

Cellax is a PEGylated carboxymethylcellulose conjugate of docetaxel (DTX) which condenses into a 120-nm nanoparticle, and was compared against the approved clinical taxane nanoformulation (Abraxane®) in mouse models. Cellax increased the systemic exposure of taxanes by 37× compared to Abraxane, and improved the delivery specificity: Cellax uptake was selective to the tumor, liver and spleen, with a 203× increase in tumor accumulation compared to Abraxane. The concentration of released DTX in Cellax treated tumors was well above the IC50 for at least 10 d, while paclitaxel released from Abraxane was undetectable after 24h. In s.c. PC3 (prostate) and B16F10 (melanoma) models, Cellax exhibited enhanced efficacy and was better tolerated compared to Abraxane. In an orthotopic 4T1 breast tumor model, Cellax reduced the incidence of lung metastasis to 40% with no metastasic incidence in other tissues. Mice treated with Abraxane displayed increased lung metastasic incidence (>85%) with metastases detected in the bone, liver, spleen and kidney. These results confirm that Cellax is a more effective drug delivery strategy compared to the approved taxane nanomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2012.07.043DOI Listing

Publication Analysis

Top Keywords

compared abraxane
12
approved taxane
8
taxane nanoformulation
8
compared approved
8
models cellax
8
liver spleen
8
metastasic incidence
8
cellax
7
abraxane
6
compared
5

Similar Publications

Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.

View Article and Find Full Text PDF

Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.

View Article and Find Full Text PDF

Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers.

View Article and Find Full Text PDF

Peptide Aptamer-Paclitaxel Conjugates for Tumor Targeted Therapy.

Pharmaceutics

December 2024

Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China.

: Traditional paclitaxel therapy often results in significant side effects due to its non-specific targeting of cancer cells. Peptide aptamer-paclitaxel conjugates present a promising alternative by covalently attaching paclitaxel to a versatile peptide aptamer via a linker. Compared to antibody-paclitaxel conjugates, peptide aptamer-paclitaxel conjugates offer several advantages, including a smaller size, lower immunogenicity, improved tissue penetration, and easier engineering.

View Article and Find Full Text PDF

Background: Chemoresistance is a major obstacle in high-grade serous carcinoma (HGSC) treatment. Although many patients initially respond to chemotherapy, the majority of them relapse due to Carboplatin and Paclitaxel resistance. Drug repurposing has surfaced as a potentially effective strategy that works synergically with standard chemotherapy to bypass chemoresistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!