Many of the solution phase properties of nanoparticles, such as their colloidal stability and hydrodynamic diameter, are governed by the number of stabilizing groups bound to the particle surface (i.e., grafting density). Here, we show how two techniques, analytical ultracentrifugation (AUC) and total organic carbon analysis (TOC), can be applied separately to the measurement of this parameter. AUC directly measures the density of nanoparticle-polymer conjugates while TOC provides the total carbon content of its aqueous dispersions. When these techniques are applied to model gold nanoparticles capped with thiolated poly(ethylene glycol), the measured grafting densities across a range of polymer chain lengths, polymer concentrations, and nanoparticle diameters agree to within 20%. Moreover, the measured grafting densities correlate well with the polymer content determined by thermogravimetric analysis of solid conjugate samples. Using these tools, we examine the particle core diameter, polymer chain length, and polymer solution concentration dependence of nanoparticle grafting densities in a gold nanoparticle-poly(ethylene glycol) conjugate system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538977PMC
http://dx.doi.org/10.1021/ac301980aDOI Listing

Publication Analysis

Top Keywords

grafting densities
12
grafting density
8
analytical ultracentrifugation
8
total organic
8
organic carbon
8
carbon analysis
8
measured grafting
8
polymer chain
8
polymer
5
measuring grafting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!