Polyhistidine peptide dendrimer self-assembles on CdSe/ZnS quantum dots (QDs) with very high affinity and stability, a property ascribable to its multivalent geometry. Here we designed a fluorescent protein, GCN-mCherry, that exists as an oligomeric bundled structure in solution as well as on the surface to imitate the structure of a synthetic dendrimer. GCN-mCherry forms a very stable assembly with QDs, which can resist displacement by 500 mM imidazole and the dendrimer peptide, as measured by the Förster resonance energy transfer from QD to mCherry. Our work manifested a prominent stability enhancement of protein-nanoparticle assembly through directional ligand-ligand interaction on the surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la302902mDOI Listing

Publication Analysis

Top Keywords

genetically encodable
4
encodable design
4
design ligand
4
ligand "bundling"
4
"bundling" surface
4
surface nanoparticles
4
nanoparticles polyhistidine
4
polyhistidine peptide
4
peptide dendrimer
4
dendrimer self-assembles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!