Affinity proteomics: the role of specific binding reagents in human proteome analysis.

Expert Rev Proteomics

Protein Technology Group, Babraham Bioscience Technologies Ltd, Babraham Research Campus, Cambridge, UK.

Published: August 2012

Affinity proteomics is the field of proteome analysis based on the use of antibodies and other binding reagents as protein-specific detection probes. In this review, the particular strengths of affinity methods for determination of protein localization, functional characterization, biomarker discovery and intracellular applications, and their resulting impact in basic and clinical research are highlighted. An additional focus is on the requirements for systematic binder generation and current large-scale binder projects, including bioinformatic frameworks for epitope selection and for documentation of available binding reagents and their performance. In addition to current affinity proteomics methods and applications, including arrays of proteins, binders, lysates and tissues, approaches coupling mass spectrometry-based proteomics and affinity proteomics are reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1586/epr.12.34DOI Listing

Publication Analysis

Top Keywords

affinity proteomics
16
binding reagents
12
proteome analysis
8
affinity
5
proteomics role
4
role specific
4
specific binding
4
reagents human
4
human proteome
4
analysis affinity
4

Similar Publications

T cell induced expression of Coronin-1A facilitates blood-brain barrier transmigration of breast cancer cells.

Sci Rep

December 2024

Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.

In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.

View Article and Find Full Text PDF

Salivary extracellular vesicles isolation methods impact the robustness of downstream biomarkers detection.

Sci Rep

December 2024

Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France.

Extracellular vesicles (EVs), crucial mediators in cell-to-cell communication, are implicated in both homeostatic and pathological processes. Their detectability in easily accessible peripheral fluids like saliva positions them as promising candidates for non-invasive biomarker discovery. However, the lack of standardized methods for salivary EVs isolation greatly limits our ability to study them.

View Article and Find Full Text PDF

Corosolic acid (CA), a natural triterpenoid, exhibits various biological activities and is often called as plant-derived insulin due to its significant hypoglycemic effects, making it especially beneficial for individuals with diabetes or high blood glucose levels. However, CA has notable in vitro toxicity, low water solubility, and poor pharmacokinetic properties. To address these limitations, a series of CA derivatives were synthesized, resulting in the identification of derivative H26, which demonstrates a significantly enhanced hypoglycemic effect, reduced toxicity, and improved pharmacokinetic characteristics compared to CA.

View Article and Find Full Text PDF

Schizophrenia (SCZ), bipolar (BD) and major depression disorder (MDD) are severe psychiatric disorders that are challenging to treat, often leading to treatment resistance (TR). It is crucial to develop effective methods to identify and treat patients at risk of TR at an early stage in a personalized manner, considering their biological basis, their clinical and psychosocial characteristics. Effective translation of theoretical knowledge into clinical practice is essential for achieving this goal.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a life-threatening condition characterized by the weakening and dilation of the abdominal aorta. Few diagnostic biomarkers have been proposed for this condition. We performed mass spectrometry-based proteomics analysis of affinity-enriched plasma from 45 patients with AAA and 45 matched controls to identify changes to the plasma proteome and potential diagnostic biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!