In this study, we report label-free detection of alpha-fetoprotein (AFP), which has been used as a biomarker for hepatocellular carcinoma, by a microfluidic reflectometric interference spectroscopy (RIfS) system adopting a simple halogen light source and an inexpensive silicon-based sensor chip. Introduction of carboxy groups on a silicon nitride sensor chip to immobilize anti-AFP monoclonal antibody (anti-AFP) was carried out simply by immersion in aqueous solution containing triethoxysilylpropylmaleamic acid bearing a carboxy group and a silanol group. The RIfS system with the anti-AFP-immobilized sensor chip was found to give a reversible response through 100 on/off cycles using a regeneration buffer with high reproducibility (coefficient of variation (CV) = 5.7%). The limit of detection (LOD) of AFP was 100 ng mL(-1), and the measurement range spanned 3 orders of magnitude. Furthermore, the sensor chip showed no cross-reactivity with human serum albumin, Immunoglobulin G, transferrin, or fibrinogen at 100 μg mL(-1) without the use of blocking reagents such as bovine serum albumin. Consequently, the proposed RIfS system is a potentially effective tool for biomarker detection and in vitro diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la302221yDOI Listing

Publication Analysis

Top Keywords

sensor chip
16
rifs system
12
silicon nitride
8
nitride sensor
8
microfluidic reflectometric
8
reflectometric interference
8
interference spectroscopy
8
serum albumin
8
sensor
5
fabrication carboxylated
4

Similar Publications

Hydrogel Strain Sensors for Integrating Into Dynamic Organ-on-a-Chip.

Small

January 2025

Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Current hydrogel strain sensors have never been integrated into dynamic organ-on-a-chip (OOC) due to the lack of sensitivity in aqueous cell culture systems. To enhance sensing performance, a novel strain sensor is presented in which the MXene layer is coated on the bottom surface of a pre-stretched anti-swelling hydrogel substrate of di-acrylated Pluronic F127 (F127-DA) and chitosan (CS) for isolation from the cell culture on the top surface. The fabricated strain sensors display high sensitivity (gauge factor of 290.

View Article and Find Full Text PDF

In this study, we show that on-chip grown, vertically aligned MoS films that are decorated with Ni(OH) catalyst are suitable materials to be applied as working electrodes in electrochemical sensing. The constructed sensors display a highly repeatable response to dopamine, used as a model analyte, in a large dynamic range from 1 μM to 1 mM with a theoretical detection limit of 0.1 μM.

View Article and Find Full Text PDF

Visual sensors, including 3D light detection and ranging, neuromorphic dynamic vision sensor, and conventional frame cameras, are increasingly integrated into edge-side intelligent machines. However, their data are heterogeneous, causing complexity in system development. Moreover, conventional digital hardware is constrained by von Neumann bottleneck and the physical limit of transistor scaling.

View Article and Find Full Text PDF

Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.

View Article and Find Full Text PDF

Carbaryl is a broad-spectrum carbamate fungicide that may pose a threat to ecosystems and human health. To prevent and control the harm caused by excessive application of carbaryl, a full-dimensional divergence effect SERS sensor has been constructed. Biodegradable paper chips were used as sensor substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!