Characterization of polyacrylonitrile based carbon nanofiber mats via electron beam processing.

J Nanosci Nanotechnol

Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 580-185, Republic of Korea.

Published: July 2012

The aim of this study was to evaluate the ability of electron beam irradiation to drive stabilization reactions within PAN nanofiber mats to obtain carbon nanofiber mats. PAN nanofiber mats with fiber diameters of 300-400 nm were prepared via an electrospinning method. Electrospun PAN nanofiber mats were stabilized by electron beam irradiation with various doses up to 5,000 kGy. Using the irradiation-stabilized PAN nanofiber mats, carbon nanofibers were obtained by pyrolysis in a tube furnace for 1 h at 1,000 degrees C under an N2 atmosphere. FT-IR analysis indicated that the transformation of C[triple bond]N groups to C==N groups was accelerated by electron beam stabilization. The thermal behavior of the PAN nanofiber mats was studied using DSC and TGA. DSC thermograms showed that the peak temperatures of the exothermic reactions were found to decrease with increasing electron beam irradiation doses. Irradiation-stabilized PAN nanofiber mats were not observed to dramatically decrease in weight between 290 degrees C and 320 degrees C, an observation presumed to be related to cyclization. The char yields of PAN were found to increase with increasing irradiation doses.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2012.6346DOI Listing

Publication Analysis

Top Keywords

nanofiber mats
32
pan nanofiber
24
electron beam
20
beam irradiation
12
irradiation doses
12
nanofiber
8
carbon nanofiber
8
mats
8
mats carbon
8
irradiation-stabilized pan
8

Similar Publications

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

Methyl Gallate and Amoxicillin-Loaded Electrospun Poly(vinyl alcohol)/Chitosan Mats: Impact of Acetic Acid on Their Anti- Activity.

Polymers (Basel)

December 2024

Materials Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Bangkok 10140, Thailand.

Methyl gallate (MG), a natural phenolic compound, exhibits in vitro synergistic activity with amoxicillin (Amox) against methicillin-resistant (MRSA), a global health concern. This study developed electrospun nanofibers incorporating MG and Amox into a poly(vinyl alcohol) (PVA)/chitosan (CS) blend to target both methicillin-susceptible (MSSA) and MRSA. The formulation was optimized, and the impact of acetic acid on antibacterial activity was evaluated using agar disc diffusion.

View Article and Find Full Text PDF

The antibacterial nanofibrous mat is crucial in biomedicine as it enhances infection control, expedites wound healing, and mitigates health hazards by decreasing antibiotic usage. A novel synergistic antibacterial and hydrophilic nanofibrous mat successfully fabricated by solution electrospinning from polyvinyl alcohol (PVA) incorporated Croton bonplandianum Baill (CBB) leaves extract. Antioxidant-enriched leaf extract of the CBB plant was integrated with PVA in varying proportions of 30% (CBB-30), 40% (CBB-40), and 50% (CBB-50) to manufacture antibacterial nanofibrous mat.

View Article and Find Full Text PDF

The solid-phase adsorption principles and fundamental mechanism of isobutyric acid, 1-octen-3-ol, and octanal (three key off-odor compounds of oyster peptides) were explored using electrospun octenyl succinylated starch-pullulan (OSS-PUL) nanofiber mat. The nanofiber mats had selective adsorption behaviors as indicated by the selective adsorption rates of isobutyric acid, 1-octen-3-ol, and octanal, which were 94.96%, 85.

View Article and Find Full Text PDF

In Situ Monitoring of Mechanofluorescence in Polymeric Nanofibers.

Macromol Rapid Commun

December 2024

Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy.

Mechanofluorescent polymers represent a promising class of materials exhibiting fluorescence changes in response to mechanical stimuli. One approach to fabricating these polymers involves incorporating aggregachromic dyes, whose emission properties are governed by the intermolecular distance, which can, in turn, be readily altered by microstructural changes in the surrounding polymer matrix during mechanical deformation. In this study, a mechanofluorescent additive featuring excimer-forming oligo(p-phenylene vinylene) dyes (tOPV) is incorporated into electrospun polyurethane fibers, producing mats of fibers with diameters ranging from 300 to 700 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!