Mesoporous titania with crystalline pore walls and controlled pore sizes was fabricated through triblock copolymer (pluronic series) templated sol-gel process by changing the copolymer concentration and by adjusting their calcination temperature. Compared with mesoprous silicate, the synthetic condition of mesoporous titania would be sensitive to calcination temperature. Their pore arrangement and pore size depend strongly on the concentration of copolymer used as a template. Their arrangement of pores and specific surface area increases with the increase of calcination temperature up to critical limit, 320 degrees C. Beyond the critical temperature, the orderness of pores and specific surface area decreases due to the collapse of the pore walls. The specific surface area, pore size and pore orderness can be controlled by optimizing calcination temperature as well as polymer concentration. We demonstrate the mechanism of pore formation and their collapse in the sol-gel synthesis of mesoporous titania.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.6314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!