Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents the fabrication and characteristics of a new aptamer-based electrochemical immunosensor on the patterned zinc oxide nanorod networks (ZNNs) for detecting thrombin. Aptamers are single-stranded RNA or DNA sequence that binds to target materials with high specificity and affinity. An antibody-antigen-aptamer sandwich structure was employed to this immunosensor for detecting thrombin. First, hydrothermally grown ZNNs were patterned on the patterned 0.02 cm2 Au/Ti electrodes on a glass substrate by lift-off process. The high isoelectric point (IEP, approximately 9.5) of nanostructured ZnO makes it suitable for immobilizing proteins with low IEP. Then 5 microL of the 500 nM antibody was immobilized on the ZNNs electrode. 5 micro/L of the mixture of 1 microM aptamer labeled by ferrocene (Fc) and thrombin was dropped on the electrode for antibody-antigen binding. The peak oxidation currents of the immunosensors at various thrombin concentrations were measured by using cyclic voltammetry. The peak oxidation current was observed at 340 mV versus Ag/AgCl electrode, and the peak oxidation current increased linearly from 62.26 nA to 354.13 nA with the logarithmic concentration of thrombin in the range from 100 pM to 250 nM. Fabrication of an aptamer-based immunosensor for thrombin detection is a new attempt and the characteristics of the fabricated immunosensors showed that the fabricated aptamer-baded immunosensor worked electrochemically well and had a low detection limit (approximately 91.04 pM) and good selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.6377 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!