A novel, simple and low-temperature ultrasonic spray method was developed to fabricate the multi-walled carbon-nanotubes (MWCNTs) based extended-gate field-effect transistors (EGFETs) as the pH sensor. With an acid-treated process, the chemically functionalized two-dimensional MWCNT network could provide plenty of functional groups which exhibit hydrophilic property and serve as hydrogen sensing sites. For the first time, the EGFET using a MWCNT structure could achieve a wide sensing rage from pH = 1 to pH = 13. Furthermore, the pH sensitivity and linearity values of the CNT pH-EGFET devices were enhanced to 51.74 mV/pH and 0.9948 from pH = 1 to pH = 13 while the sprayed deposition reached 50 times. The sensing properties of hydrogen and hydroxyl ions show significantly dependent on the sprayed deposition times, morphologies, crystalline and chemical bonding of acid-treated MWCNT. These results demonstrate that the MWCNT-EGFETs are very promising for the applications in the pH and biomedical sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2012.6358DOI Listing

Publication Analysis

Top Keywords

extended-gate field-effect
8
field-effect transistors
8
low-temperature ultrasonic
8
ultrasonic spray
8
spray method
8
sprayed deposition
8
sensing
4
sensing characteristics
4
characteristics extended-gate
4
transistors multi-walled
4

Similar Publications

Neurodegenerative diseases, characterized by the progressive deterioration of neuronal function and structure, pose significant global public health and economic challenges. Brain-Derived Neurotrophic Factor (BDNF), a key regulator of neuroplasticity and neuronal survival, has emerged as a critical biomarker for various neurodegenerative and psychiatric disorders, including Alzheimer's disease. Traditional diagnostic methods, such as Enzyme-Linked Immunosorbent Assay (ELISA) and electrochemiluminescence (ECL) assays, face limitations in terms of sensitivity, stability, reproducibility, and cost-effectiveness.

View Article and Find Full Text PDF

Antibiotic residue detection by novel photoelectrochemical extended-gate field-effect transistor sensor.

J Hazard Mater

December 2024

College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092,  China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Residual antibiotics in the environment may pose threats to both ecological system and public health, necessitating the development of efficient analytical strategy for monitoring and control. This study proposes a photoelectrochemical extended-gate field-effect transistor (PEGFET) sensor for specific and sensitive detection of kanamycin. The sensor utilizes ITO glass as the extended gate electrode (photoelectrode) and titanium dioxide as the photosensitive material.

View Article and Find Full Text PDF

A step towards non-invasive diagnosis of diabetes mellitus using synthesized MOF-MXene hybrid material with extended gate field-effect transistor integration.

J Mater Chem B

December 2024

Laboratory of Sensors, Energy and Electronic devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India.

The increasing demand for non-invasive and non-enzymatic glucose sensors is driven by the objective of eliminating the need for blood pricks from the body and enabling enzyme-free detection of glucose for diagnosing diabetes mellitus. To address this need, we synthesized Ni MOF-MXene (Ni) hybrid material through a one-pot synthesis method, which acts as a catalyst to detect salivary glucose using an extended gate field effect transistor (EGFET) method. The resulting sensor exhibits good selectivity towards glucose over common interfering molecules such as sucrose, fructose, maltose, uric acid, and ascorbic acid under physiological conditions in saliva.

View Article and Find Full Text PDF

Design and demonstration of a temperature-resistant aptamer structure for highly sensitive mercury ion detection with BioFETs.

Talanta

February 2025

Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; College of Semiconductor Research, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:

Article Synopsis
  • - This study created a temperature-resistant aptamer paired with electric double-layer Field-Effect Transistors (FETs) for detecting mercury ions effectively, leveraging the aptamer's stable hairpin structure that enhances sensitivity.
  • - Two aptamer sequences with varying melting temperatures were tested, revealing that the one with a higher melting temperature demonstrated significantly improved detection sensitivity, achieving a remarkable limit of detection of 4.68 × 10 M, much lower than previous methods.
  • - The research emphasized that both the thermal properties of aptamers and the surrounding temperature are crucial for optimizing sensor performance, particularly in differentiating between mercury and other heavy metals like arsenic and lead.
View Article and Find Full Text PDF

In this article, we present the first instance of depositing WTe-sensitive films with varying thicknesses (3, 4, and 5 nm) onto flexible polyimide substrates using radio-frequency sputtering. These films were used to create an extended-gate field-effect transistor (EGFET) for pH sensing and detecting procalcitonin (PCT) in the sera of patients with sepsis or bacterial infections. Among the films, the 4 nm WTe film exhibited high sensitivity (59.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!