Graphene is a zero band-gap semi-metal with remarkable electromagnetic and mechanical characteristics. This study is the first ever attempt to use graphene in the surface plasmon resonance (SPR) sensor as replacement material for gold/silver. Graphene, comprised of a single atomic layer of carbon, is a purely two-dimensional material and it is an ideal candidate for use as a biosensor because of its high surface-to-volume ratio. This sensor is based on the resonance occasion of the surface plasmon wave (SPW) according to the dielectric constants of each metal film and detected material in gas or aqueous phase. Graphene in the SPR sensor is expected to enlarge the range of analyte to bio-aerosols based on the superior electromagnetic properties of graphene. In this study, a SPR-based fiber optic sensor coated with multi-layered graphene is described. The multi-layered graphene film synthesized by chemical vapor deposition (CVD) on Ni substrate was transferred on the sensing region of an optical fiber. The graphene coated SPR sensor is used to analyze the interaction between structured DNA biotin and Streptavidin is analyzed. Transmitted light after passing through the sensing region is measured by a spectrometer and multimeter. As the light source, blue light which of 450 to 460 nm in wavelength was used. We observed the SPR phenomena in the sensor and show the contrary trends between bare fiber and graphene coated fiber. The fabricated graphene based fiber optic sensor shows excellent detection sensitivity of the interaction between structured DNA and Streptavidin.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2012.6227DOI Listing

Publication Analysis

Top Keywords

multi-layered graphene
12
surface plasmon
12
fiber optic
12
optic sensor
12
spr sensor
12
graphene
11
graphene surface
8
sensor
8
sensing region
8
fiber graphene
8

Similar Publications

In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.

View Article and Find Full Text PDF

Unique thermoelectric properties of low-cost, widely available conducting polymers and multi-layered graphite structures have motivated the development of flexible thermoelectric generators using screen printing for low-temperature applications. Composites of polyaniline and graphite in different ratios with one weight percentage of bismuth telluride were prepared to fabricate flexible thermoelectric generators. The performance of the devices showed that the addition of graphite to polyaniline reduced the band gap energy from 2.

View Article and Find Full Text PDF
Article Synopsis
  • Superhydrophobic surfaces with hierarchical micro/nanostructures, like the developed O-Ph-POSS on fluorinated graphene, achieve high water contact angles (152°) and low surface energy (5.6 mJ/m²), making them highly robust and effective in water-repelling applications.
  • The O-Ph-POSS-FG hybrid demonstrated remarkable oil absorption (200-500 wt%) and was successfully used to coat polyurethane sponges, achieving oil-water separation efficiencies of 90%-99%, even after multiple cycles.
  • Durability tests showed that the sponges maintained superhydrophobic properties over time, retaining effective water contact angles and separation efficiency after one year and multiple mechanical stress tests.
View Article and Find Full Text PDF

This study presents the synthesis and comprehensive characterization of an FeO-Gr/carbon/polypyrrole nanofiber composite, highlighting its morphology as determined through Field Emission Scanning Electron Microscopy (FE-SEM) analysis, which reveals the small rod-like shape of the nano-fibers with an average diameter of 68 nm calculated from Image J software, contributing to a high surface area. X-ray diffraction (XRD) analysis confirms the effective formation of FeO-Gr nanofibers, graphene, carbon, and polypyrrole (PPy), showcasing distinct crystallographic phases that strengthen the material's magnetic and conductive properties. The impedance plane plot indicates two relaxation processes at low and high-frequency regions from low to high-temperature ranges of 273 K to 363 K, reflecting complex electroactive charge transport dynamics within the nanofiber composite.

View Article and Find Full Text PDF

Bacterial adhesion and biofilm maturation is significantly influenced by surface properties, encompassing both bare surfaces and single or multi-layered coatings. Hence, there is an utmost interest in exploring the intricacies of gene regulation in sulfate-reducing bacteria (SRB) on copper and graphene-coated copper surfaces. In this study, G20 was used as the model SRB to elucidate the pathways that govern pivotal roles during biofilm formation on the graphene layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!