Carcinogenesis is related to the loss of homeostatic control of cellular processes regulated by transcriptional circuits and epigenetic mechanisms. Among these, the activities of peroxisome proliferator-activated receptors (PPARs) and DNA methyltransferases (DNMTs) are crucial and intertwined. PPARγ is a key regulator of cell fate, linking nutrient sensing to transcription processes, and its expression oscillates with circadian rhythmicity. Aim of our study was to assess the periodicity of PPARγ and DNMTs in pancreatic cancer (PC). We investigated the time-related patterns of PPARG, DNMT1, and DNMT3B expression monitoring their mRNA levels by qRT-PCR at different time points over a 28-hour span in BxPC-3, CFPAC-1, PANC-1, and MIAPaCa-2 PC cells after synchronization with serum shock. PPARG and DNMT1 expression in PANC-1 cells and PPARG expression in MIAPaCa-2 cells were characterized by a 24 h period oscillation, and a borderline significant rhythm was observed for the PPARG, DNMT1, and DNMT3B expression profiles in the other cell lines. The time-qualified profiles of gene expression showed different shapes and phase relationships in the PC cell lines examined. In conclusion, PPARG and DNMTs expression is characterized by different time-qualified patterns in cell lines derived from human PC, and this heterogeneity could influence cell phenotype and human disease behaviour.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433147PMC
http://dx.doi.org/10.1155/2012/890875DOI Listing

Publication Analysis

Top Keywords

cell lines
16
dnmt1 dnmt3b
12
dnmt3b expression
12
pparg dnmt1
12
time-qualified patterns
8
expression
8
pancreatic cancer
8
miapaca-2 cells
8
cell
6
pparg
5

Similar Publications

Objective: Lung cancer is the primary cause of cancer-related deaths globally. Protein kinase B (AKT) protein is associated with many pathways in non-small cell lung cancer (NSCLC), such as proliferation, migration, invasion, and apoptosis. Mushrooms have a long history of being used in traditional medicine to treat various diseases.

View Article and Find Full Text PDF

TSPOAP1-AS1: A Novel Biomarker for the Prognosis and Therapeutic Target in Cervical Cancer.

Comb Chem High Throughput Screen

January 2025

Thoracic and Abdominal Radiotherapy Department I, Meizhou People's Hospital, Meizhou 514031, Guangdong, China.

Background: TSPOAP1 antisense RNA 1 (TSPOAP1-AS1) is a long non-coding RNA (lncRNA) that has received widespread attention in oncology research in recent years. Its role and mechanism in some cancers have gradually been revealed. However, it is not clear what role TSPOAP1-AS1 plays in cervical cancer (CESC).

View Article and Find Full Text PDF

Gamma-Retroviral (RVVs) and lentiviral vectors (LVVs) represent indispensable tools in somatic gene therapy, mediating the efficient, stable transfer of therapeutic genes into a variety of human target cells. LVVs, in contrast to RVVs, are capable of stably genetically modifying non-proliferating target cells, making them the superior instrument in cell and gene therapy. To date, the LVV manufacturing process employs human embryonic kidney cells (HEK293) and derivatives thereof transiently transfected with multiple plasmids encoding the required viral vector components.

View Article and Find Full Text PDF

Genotoxicity testing of the anthraquinone dye Alizarin Red S.

Curr Res Toxicol

December 2024

Institute of Nutrition and Food Science, Department of Food Safety, University of Bonn, Germany.

The anthraquinone dye Alizarin Red S (ARS) is used for marking live animals, specifically as a tool for monitoring the stock of the endangered European eel by marking caught fish with ARS before releasing the eels back into the wild. As ARS can be found in recaptured eels even years later, knowledge of potential health hazards of ARS is essential for assessing the food safety of eels marked with ARS. As the compound class of anthraquinones is known for their genotoxic and carcinogenic properties, concerns were raised regarding the food safety of marked eels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!