Synthetic substrates with defined chemical and structural characteristics may potentially be prepared to mimic the living ECM to regulate cell adhesion and growth. Hydrogels with cell-adhesive peptides (0.28 ± 0.03 nmol peptide cm(-2) , TTA-R-0.5; and 0.91 ± 0.12 nmol peptide cm(-2) , TTA-R-2.0) and/or micro-scaled topographical patterns (10, 25, and 80 µm grooves) are prepared using enzymatic polymerization. The adherent morphology and proliferation of C2C12 skeletal myoblasts and human aortic smooth muscle cells (hAoSM) on the hydrogels are studied. The newly developed hydrogels may be useful in investigating the roles of cell adhesion and substrate surface properties in the communication of adherent cells with the ECM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.201200148 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!