Despite recent advance in mass sequencing technologies such as pyrosequencing, assessment of culture-independent microbial eukaryote community structures using universal primers remains very difficult due to the tremendous richness and complexity of organisms in these communities. Use of a specific PCR marker targeting a particular group would provide enhanced sensitivity and more in-depth evaluation of microbial eukaryote communities compared to what can be achieved with universal primers. We discovered that many phylum- or group-specific single-nucleotide polymorphisms (SNPs) exist in small subunit ribosomal RNA (SSU rRNA) genes from diverse eukaryote groups. By applying this discovery to a known simple allele-discriminating (SAP) PCR method, we developed a technique that enables the identification of organisms belonging to a specific higher taxonomic group (or phylum) among diverse types of eukaryotes. We performed an assay using two complementary methods, pyrosequencing and clone library screening. In doing this, specificities for the group (ciliates) targeted in this study in bulked environmental samples were 94.6% for the clone library and 99.2% for pyrosequencing, respectively. In particular, our novel technique showed high selectivity for rare species, a feature that may be more important than the ability to identify quantitatively predominant species in community structure analyses. Additionally, our data revealed that a target-specific library (or ciliate-specific one for the present study) can better explain the ecological features of a sampling locality than a universal library.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887769PMC
http://dx.doi.org/10.1007/s10059-012-0169-0DOI Listing

Publication Analysis

Top Keywords

microbial eukaryote
8
universal primers
8
clone library
8
development single-nucleotide
4
single-nucleotide polymorphism-based
4
polymorphism-based phylum-specific
4
phylum-specific pcr
4
pcr amplification
4
amplification technique
4
technique application
4

Similar Publications

Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators.

Sci Rep

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.

View Article and Find Full Text PDF

Streptococcus pyogenes remains one of the top ten causes of mortality from infectious diseases. Children in low-income nations have high carrier rates of Streptococcus pyogenes, which can serve as a source of infections, including simple superficial infections that may lead to invasive and post-streptococcal diseases, particularly among schoolchildren. This study aimed to assess the prevalence of Streptococcus pyogenes, associated factors, and antimicrobial susceptibility profiles among urban and rural public schoolchildren in Gondar City, Northwest Ethiopia.

View Article and Find Full Text PDF

The respiratory tract is colonized with low-density microbial communities, which have been shown to impact human respiratory health through microbiota-host interactions. However, a lack of fast and cost-effective nucleic acid extraction method for low-microbial biomass samples hinders investigation of respiratory microbiota. Here, we performed a pilot study to assess the suitability of the NAxtra nucleic acid extraction protocol for profiling bacterial microbiota in respiratory samples.

View Article and Find Full Text PDF

The objective of this study was to analyze the antimicrobial and anti-stick capacity of essential oil extracted from oregano (Origanum vulgare) in relation to various strains of Escherichia coli (Ec 41, Ec 42, Ec 44, Ec 45) isolated from meat products. Techniques such as Determination of Minimum Inhibitory Concentration were used (MIC) and Minimum Bactericidal Concentration (CBM). Furthermore, the method was used disk diffusion method to examine the interaction between O.

View Article and Find Full Text PDF

Siderophore synthetase-receptor gene coevolution reveals habitat- and pathogen-specific bacterial iron interaction networks.

Sci Adv

January 2025

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!