In a smart solution-processable luminescent poly(norbornene)/oxazine-1 (Ox1) intercalated fluoromica nanohybrid, the supramolecular organization of the Ox1 dyes can be tuned at the nanoscale level and a deep red emission band switched on by inducing a phase segregation of aligned molecules within the fluoromica layered scaffold. By combining low-temperature photoluminescence and ultrafast pump-probe spectroscopy we prove that the nanoconstrained Ox1 molecules are organized in a J-type packing and we highlight the critical factor that controls such a supramolecular dye arrangement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp42361h | DOI Listing |
Phys Chem Chem Phys
October 2012
Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milano, Italy.
In a smart solution-processable luminescent poly(norbornene)/oxazine-1 (Ox1) intercalated fluoromica nanohybrid, the supramolecular organization of the Ox1 dyes can be tuned at the nanoscale level and a deep red emission band switched on by inducing a phase segregation of aligned molecules within the fluoromica layered scaffold. By combining low-temperature photoluminescence and ultrafast pump-probe spectroscopy we prove that the nanoconstrained Ox1 molecules are organized in a J-type packing and we highlight the critical factor that controls such a supramolecular dye arrangement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!