We determined the extent to which ligating both maternal uterine arteries affects fetal hepatic energy and redox states in the fetal rat. Bilateral maternal uterine artery ligation on d 18 of the rat's 21.5-d gestation significantly inhibits fetal growth; sham surgery limits growth to a lesser extent. Within 12 h of surgery and persisting to d 19, small-for-gestational age (SGA) fetuses had significantly diminished ATP/ADP and adenylate charge ratios, whereas sham fetuses had values intermediate between SGA and normal. Hepatic mitochondrial redox state demonstrated similar changes. Cytosolic redox state in SGA fetuses at 12 and 24 h after surgery was significantly elevated. SGA fetuses had significantly diminished plasma insulin and elevated glucagon concentrations. On d 19 and 20, hepatic ATP/ADP and cytosolic NAD+/NADH correlated directly for sham and normal but not SGA fetuses. Alterations in glucose, insulin, and glucagon availability and hypoxia were responsible for the changes in energy and redox states. They may also have disassociated hepatic cytosolic from mitochondrial redox states and altered the equilibrium between adenine and nicotinamide nucleotides. These altered cellular functions retarded fetal growth. Newborn SGA, sham, and normal rat pups had similar hepatic ATP/ADP, cytosolic, and mitochondrial redox states at 10 and 240 min after delivery suggesting that the hypoglycemia which developed in SGA pups was not attributable to alterations in these variables.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1203/00006450-199001000-00017 | DOI Listing |
Clin J Am Soc Nephrol
January 2025
Department of Medicine, Division of Nephrology, University of California, Davis, CA, USA.
Background: Mitochondria-driven oxidative/redox stress and inflammation play a major role in chronic kidney disease (CKD) pathophysiology. Compounds targeting mitochondrial metabolism may improve mitochondrial function, inflammation, and redox stress; however, there is limited evidence of their efficacy in CKD.
Methods: We conducted a pilot randomized, double-blind, placebo-controlled crossover trial comparing the effects of 1200 mg/day of coenzyme Q10 (CoQ10) or 1000 mg/day of nicotinamide riboside (NR) supplementation to placebo in 25 people with moderate-to-severe CKD (estimated glomerular filtration rate [eGFR] <60mL/min/1.
J Am Chem Soc
January 2025
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
Iridium is used in commercial light-emitting devices and in photocatalysis but is among the rarest stable chemical elements. Therefore, replacing iridium(III) in photoactive molecular complexes with abundant metals is of great interest. First-row transition metals generally tend to yield poorer luminescence behavior, and it remains difficult to obtain excited states with redox properties that exceed those of noble-metal-based photocatalysts.
View Article and Find Full Text PDFSmall
January 2025
Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India.
The present work reports the synthesis, characterization, and excited state photo-physical studies of two copper(II) compounds, 1 & 2, which show interference-free emission with homocysteine (Hcy). Cu(II) complexes offer an orthogonal detection strategy involving fluorescence and electrochemical methods, paving the way for improved point-of-care diagnostics and early cardiovascular diseases intervention. The reduction-induced emission enhancement (RIEE) of Cu complexes facilitates the fluorescence measurement of Hcy at physiological pH.
View Article and Find Full Text PDFACS Nano
January 2025
National Synchrotron Light source II, Brookhaven National Laboratory, Upton, New York 11973, United States.
Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.
The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!