Mutations in the human ether-a-go-go-related gene (hERG) result in long QT syndrome type 2 (LQT2). The hERG gene encodes a K(+) channel that contributes to the repolarization of the cardiac action potential. We have previously shown that hERG mRNA transcripts that contain premature termination codon mutations are rapidly degraded by nonsense-mediated mRNA decay (NMD). In this study, we identified a LQT2 nonsense mutation, Q81X, which escapes degradation by the reinitiation of translation and generates N-terminally truncated channels. RNA analysis of hERG minigenes revealed equivalent levels of wild-type and Q81X mRNA while the mRNA expressed from minigenes containing the LQT2 frameshift mutation, P141fs+2X, was significantly reduced by NMD. Western blot analysis revealed that Q81X minigenes expressed truncated channels. Q81X channels exhibited decreased tail current levels and increased deactivation kinetics compared to wild-type channels. These results are consistent with the disruption of the N-terminus, which is known to regulate hERG deactivation. Site-specific mutagenesis studies showed that translation of the Q81X transcript is reinitiated at Met124 following premature termination. Q81X co-assembled with hERG to form heteromeric channels that exhibited increased deactivation rates compared to wild-type channels. Mutant channels also generated less outward current and transferred less charge at late phases of repolarization during ventricular action potential clamp. These results provide new mechanistic insight into the prolongation of the QT interval in LQT2 patients. Our findings indicate that the reinitiation of translation may be an important pathogenic mechanism in patients with nonsense and frameshift LQT2 mutations near the 5' end of the hERG gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518410PMC
http://dx.doi.org/10.1016/j.yjmcc.2012.08.021DOI Listing

Publication Analysis

Top Keywords

reinitiation translation
12
lqt2 nonsense
8
nonsense mutation
8
generates n-terminally
8
n-terminally truncated
8
herg
8
channels
8
herg gene
8
action potential
8
premature termination
8

Similar Publications

Ribosomes scanning from the mRNA 5' cap to the start codon may initiate at upstream open reading frames (uORFs), decreasing protein biosynthesis. Termination at a uORF can lead to re-initiation, where 40S subunits resume scanning and initiate another translation event downstream. The noncanonical translation factors MCTS1-DENR participate in re-initiation at specific uORFs, but knowledge of other trans-acting factors or uORF features influencing re-initiation is limited.

View Article and Find Full Text PDF

Synthetic translational coupling system for accurate and predictable polycistronic gene expression control in bacteria.

Metab Eng

December 2024

Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. Electronic address:

Precise and predictable genetic elements are required to address various issues, such as suboptimal metabolic flux or imbalanced protein assembly caused by the inadequate control of polycistronic gene expression in bacteria. Here, we devised a synthetic biopart based on the translational coupling to control polycistronic gene expression. This module links the translation of genes within a polycistronic mRNA, maintaining their expression ratios regardless of coding sequences, transcription rate, and upstream gene translation rate.

View Article and Find Full Text PDF

Upstream open reading frames (uORFs) are a class of translated regions (translons) in mRNA 5' leaders. uORFs are believed to be pervasive regulators of the translation of mammalian mRNAs. Some uORFs are highly repressive but others have little or no impact on downstream mRNA translation either due to inefficient recognition of their start codon(s) or/and due to efficient reinitiation after uORF translation.

View Article and Find Full Text PDF

Alignment of picornavirus proteinase/polymerase sequences reveals this family evolved into five 'supergroups'. Interestingly, the nature of the 2A region of the picornavirus polyprotein is highly correlated with this phylogeny. Viruses within supergroup 4, the , have complex 2A regions with many viruses encoding multiple 2A sequences.

View Article and Find Full Text PDF

Role of HIV self-testing in strengthening HIV prevention services.

Lancet HIV

November 2024

School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia; Melbourne Sexual Health Centre, Alfred Health, Carlton, VIC, Australia; Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK. Electronic address:

HIV self-testing, which has been increasingly available since 2016, can substantially enhance the uptake of HIV testing, especially for key populations. Clinical trials have explored the application of self-testing in various HIV prevention strategies, including post-exposure prophylaxis (PEP), pre-exposure prophylaxis (PrEP), and voluntary medical male circumcision. Research indicates that self-testing can facilitate PrEP initiation and improve adherence and continuation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!