Identifying QTLs/genes for iron and zinc in rice grains can help in biofortification programs. 168 F(7) RILs derived from Madhukar×Swarna were used to map QTLs for iron and zinc concentrations in unpolished rice grains. Iron ranged from 0.2 to 224 ppm and zinc ranged from 0.4 to 104ppm. Genome wide mapping using 101 SSRs and 9 gene specific markers showed 5 QTLs on chromosomes 1, 3, 5, 7 and 12 significantly linked to iron, zinc or both. In all, 14 QTLs were identified for these two traits. QTLs for iron were co-located with QTLs for zinc on chromosomes 7 and 12. In all, ten candidate genes known for iron and zinc homeostasis underlie 12 of the 14 QTLs. Another 6 candidate genes were close to QTLs on chromosomes 3, 5 and 7. Thus the high priority candidate genes for high Fe and Zn in seeds are OsYSL1 and OsMTP1 for iron, OsARD2, OsIRT1, OsNAS1, OsNAS2 for zinc and OsNAS3, OsNRAMP1, Heavy metal ion transport and APRT for both iron and zinc together based on our genetic mapping studies as these genes strictly underlie QTLs. Several elite lines with high Fe, high Zn and both were identified.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2012.07.054DOI Listing

Publication Analysis

Top Keywords

iron zinc
24
candidate genes
16
iron
9
zinc
9
qtls candidate
8
genes iron
8
zinc concentrations
8
concentrations unpolished
8
unpolished rice
8
rice grains
8

Similar Publications

Aims: To describe the nutritional status of people with diabetes-related foot complications and explore the association between nutrition and ulceration healing.

Methods: This retrospective cohort study included attendees of a diabetes foot service who completed a dietary questionnaire. Diet was compared to guideline recommendations and biochemical measures were recorded.

View Article and Find Full Text PDF

Soil Microbial Mechanisms to Improve Pear Seedling Growth by Applying Bacillus and Trichoderma-Amended Biofertilizers.

Plant Cell Environ

January 2025

Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China.

Bacillus velezensis SQR9 or Trichoderma harzianum NJAU4742-amended bioorganic fertilizers might significantly improve the soil microbial community and crop yields. However, the mechanisms these microorganisms act are far away from distinctness. We combined amplicon sequencing with culturable approaches to investigate the effects of these microorganisms on pear tree growth, rhizosphere nutrients and microbial mechanisms.

View Article and Find Full Text PDF

This study examines the complex interactions between wheat cultivar selection and fortification with NaFeEDTA and ascorbic acid (AA) on the bioavailability of iron (Fe) and zinc (Zn) in whole wheat flour (WWF) and chapati. Nineteen hexaploid wheat cultivars were rigorously assessed for their intrinsic Fe and Zn profiles, including total content (TC), solubility (S), and bio-accessibility (B), utilizing an in-vitro gastrointestinal model. Significant variations (P < 0.

View Article and Find Full Text PDF

Pharmaceutical supplementation and dietary fortification are the most common approaches to reducing vitamin deficits. To improve the health and nutritional value of crops, agronomic biofortification necessitates the direct application of nutrients. Producers using micronutrient fertilizers to increase the fortification of crops are essential to the success of biofortification.

View Article and Find Full Text PDF

Unlabelled: Autoimmune regulator (AIRE), a transcription factor expressed by medullary thymic epithelial cells, is required for shaping the self-antigen tolerant T cell receptor repertoire. Humans with mutations in suffer from Autoimmune Polyglandular Syndrome Type 1 (APS-1). Among many symptoms, men with APS-1 commonly experience testicular insufficiency and infertility, but the mechanisms causing infertility are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!