Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To evaluate the utility of the cross-species screening strategy for investigating key molecule(s) involved in onset and progression of hepatocellular carcinoma (HCC).
Methods: HCC-related molecule data from our previous studies and in the literature were collected to establish a cross-species dataset. Tissue samples of HCC, non-HCC surrounding liver (para-HCC), and normal liver that were collected from humans, tree shrews and rats. The genes reported to have the most differential expression in HCC were verified by analyzing the mRNA and protein levels by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively.
Results: The cross-species dataset of HCC-related molecules included four genes: epidermal fatty acid-binding protein (E-FABP), liver (L)-FABP, tyrosine a-ketoglutarate transaminase (TKT), and cytokeratin (CK8). In humans, E-FABP mRNA expression was significantly higher (P less than 0.05) in HCC (0.87+/-0.14 vs. para-HCC: 0.64+/-0.12 and normal liver: 0.67+/-0.07; F=20.910). Similar results were obtained in tree shrew (HCC: 0.87 +/- 0.25 vs. para-HCC: 0.73 +/- 0.19 and normal liver: 0.68+/-0.19; F=3.807) and rat (HCC: 0.97+/-0.22 vs. para-HCC: 0.78+/-0.16 and normal liver: 0.80 +/- 0.13; F=4.482). The Western blotting analyses revealed a similar statistically significant trend.
Conclusion: The cross-species screening strategy for tumor genes may represent a feasible and convenient process of identifying key molecule(s) for human HCC. E-FABP may be a particularly crucial molecule for hepatocarcinogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3760/cma.j.issn.1007-3418.2012.04.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!