Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2012.07.073 | DOI Listing |
Adv Sci (Weinh)
January 2025
Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
During the COVID-19 pandemic, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been recognized as the most reliable diagnostic tool. However, there is a need to develop multiplexed assays capable of analyzing multiple genes simultaneously to expand its application. To address this, a multiplexed RT-qPCR using a double emulsion (DE)-based carrier and a polymer microparticle reactor, termed primer-incorporated network tailored with Taqman probe (TaqPIN) is developed.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Anesthesiology and Perioperative Medicine, Xijing Hospital of Air Force Military Medical University, Xian, Shaanxi, China
Introduction: Minimally invasive cardiac surgery (MICS) is important for enhanced recovery in cardiac surgery. However, the incidence of chronic postsurgical pain (CPSP) is high and is associated with worsened quality of recovery and life, as well as raised short-term or long-term mortality. The mechanism is not clear, and there is still a lack of safe and effective preventive measures.
View Article and Find Full Text PDFACS Nano
January 2025
Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Microrobots are poised to transform biomedicine by enabling precise, noninvasive procedures. However, current magnetic microrobots, composed of solid monolithic particles, present fundamental challenges in engineering intersubunit interactions, limiting their collective effectiveness in navigating irregular biological terrains and confined spaces. To address this, we design hierarchically assembled microrobots with multiaxis mobility and collective adaptability by engineering the potential magnetic interaction energy between subunits to create stable, self-reconfigurable structures capable of carrying and protecting cargo internally.
View Article and Find Full Text PDFBioeng Transl Med
January 2025
Polymeric micro- and nanoparticles are useful vehicles for delivering cytokines to diseased tissues such as solid tumors. Double emulsion solvent evaporation is one of the most common techniques to formulate cytokines into vehicles made from hydrophobic polymers; however, the liquid-liquid interfaces formed during emulsification can greatly affect the stability and therapeutic performance of encapsulated cytokines. To develop more effective cytokine-delivery systems, a clear molecular understanding of the interactions between relevant proteins and solvents used in the preparation of such particles is needed.
View Article and Find Full Text PDFFoods
January 2025
College of Life Science, Xinyang Normal University, Xinyang 464000, China.
The low stability of water-in-oil-in-water (W/O/W) double emulsions greatly limits their applications. Therefore, in this study, W/O/W Pickering double emulsions (PDEs) were prepared by a two-step emulsification method using polyglycerol polyricinoleate (PGPR) and xanthan gum/lysozyme nanoparticles (XG/Ly NPs) as lipophilic and hydrophilic emulsifiers, respectively. The regulation mechanism of the performance of PDEs by XG/Ly NPs was investigated, and the ability of the system to co-encapsulate epigallocatechin gallate (EGCG) and β-carotene was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!