Gene therapy, in which oligomeric genetic material is carried into cells by nano-sized gene delivery vehicles to interfere with gene expression, represents a promising approach for preventive therapy against HIV/AIDS pandemic. Herein, we evaluate the usefulness of a phosphorus-containing dendrimer G4(NH+Et2Cl-)96 as a delivery agent of ODNs and siRNAs. G4(NH+Et2Cl-)96 formed stable complexes with ODNs or siRNAs and exhibited very low cytotoxicity in Sup T1 cells or PBMC. Functional validation was performed by using specific siRNA against HIV-1 Nef, siNEF to interfere in HIV-1 replication. G4(NH+Et2Cl-)96/siNEF dendriplex showed a high efficiency in Nef silencing. Furthermore, in vitro treatment of HIV-infected PBMC with G4(NH+Et2Cl-)96/siNEF dendriplex significantly reduced the viral replication. Our results prove the usefulness of phosphorus-containing dendrimers to deliver and transfect siRNA into CD4-T cells as a potential alternative therapy in the HIV-1 infection.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867311209025044DOI Listing

Publication Analysis

Top Keywords

gene delivery
8
odns sirnas
8
g4nh+et2cl-96/sinef dendriplex
8
validation generation
4
generation phosphorus-containing
4
phosphorus-containing polycationic
4
polycationic dendrimer
4
gene
4
dendrimer gene
4
hiv-1
4

Similar Publications

Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD.

View Article and Find Full Text PDF

Titanium nanostructure mitigating doxorubicin-induced testicular toxicity in rats via regulating major autophagy signaling pathways.

Toxicol Rep

June 2025

Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt.

Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity.

View Article and Find Full Text PDF

Copper (Cu) dysregulation, often stemming from ATP7B gene mutations, exacerbates neurological disorders like Huntington's, Alzheimer's, and Parkinson's diseases. Monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA) shows promise in mitigating Cu induced neurotoxicity by chelating intracellular Cu ions, reducing oxidative stress, and restoring antioxidant enzyme function. However, challenges such as poor bioavailability hinder its therapeutic efficacy.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a congenital multisystem disorder characterized by early-onset bone marrow failure (BMF) and cancer susceptibility. While gene addition and repair therapies are being considered as treatment options, depleted hematopoietic stem cell (HSC) pools, poor HSC mobilization, compromised survival during transduction, and increased sensitivity to conventional conditioning strategies limit eligibility for FA patients to receive gene therapies. As an alternative approach, we explored protein replacement by mRNA delivery via lipid nanoparticles (LNPs).

View Article and Find Full Text PDF

MSAB limits osteoarthritis development and progression through inhibition of β-catenin-DDR2 signaling.

Bioact Mater

April 2025

Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

The aberrant activation of the canonical Wnt/β-catenin signaling has been identified as a significant contributor to the pathogenesis of osteoarthritis (OA), exacerbating OA symptoms and driving OA progression. Despite its potential as a therapeutic target, clinical translation is impeded by the lack of a targeting delivery system and effective drug candidate that can modulate steady-state protein levels of β-catenin at post-translational level. Our study addresses these challenges by offering a new approach for OA treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!