Background: Transforming growth factor beta (TGFβ) is upregulated in chronic inflammation, where it plays a key role in wound healing and promoting fibrosis. However, little is known about the peripheral effects of TGFβ on nociception.

Methods: We tested the in vitro effects of TGFβ1 on the excitability of dorsal root ganglia (DRG) neurons and the function of potassium (K) channels. We also studied the effects of TGFβ1 infusion on pain responses to noxious electrical stimulation in healthy rats as well as the effects of neutralization of TGFβ1 on evoked pain behaviors in a rat model of chronic pancreatitis.

Results: Exposure to TGFβ1 in vitro increased sensory neuronal excitability, decreased voltage-gated A-type K(+) currents (IA) and downregulated expression of the Kv1.4 (KCNA4) gene. Further TGFβ1 infusion into the naïve rat pancreas in vivo induces hyperalgesia and conversely, neutralization of TGFβ1 attenuates hyperalgesia only in rats with experimental chronic pancreatitis. Paradoxically, TGFβ1 neutralization in naïve rats results in pancreatic hyperalgesia.

Conclusions: TGFβ1 is an important and complex modulator of sensory neuronal function in chronic inflammation, providing a link between fibrosis and nociception and is a potentially novel target for the treatment of persistent pain associated with chronic pancreatitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3515355PMC
http://dx.doi.org/10.1186/1744-8069-8-65DOI Listing

Publication Analysis

Top Keywords

sensory neuronal
12
chronic pancreatitis
12
transforming growth
8
growth factor
8
factor beta
8
hyperalgesia rats
8
chronic inflammation
8
tgfβ1
8
effects tgfβ1
8
tgfβ1 infusion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!