On the origins of faster oxo exchange for uranyl(V) versus plutonyl(V).

J Am Chem Soc

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

Published: September 2012

Activation of uranyl(V) oxo bonds in the gas phase is demonstrated by reaction of U(16)O(2)(+) with H(2)(18)O to produce U(16)O(18)O(+) and U(18)O(2)(+). In contrast, neptunyl(V) and plutonyl(V) are comparatively inert toward exchange. Computed potential energy profiles (PEPs) reveal a lower yl oxo exchange transition state for uranyl(V)/water as compared with neptunyl(V)/water and plutonyl(V)/water. A correspondence between oxo exchange rates in gas phase and acid solutions is apparent; the contrasting oxo exchange rates of UO(2)(+) and PuO(2)(+) are considered in the context of covalent bonding in actinyls. Hydroxo exchange of U(16)O(2)((16)OH)(+) with H(2)(18)O to give U(16)O(2)((18)OH)(+) proceeded much faster than oxo exchange, in accord with a lower computed transition state for OH exchange. The PEP for the addition of H(2)O to UO(2)(+) suggests that both UO(2)(+)·(H(2)O) and UO(OH)(2)(+) should be considered as potential products.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja305800qDOI Listing

Publication Analysis

Top Keywords

oxo exchange
20
faster oxo
8
exchange
8
gas phase
8
transition state
8
exchange rates
8
oxo
6
origins faster
4
exchange uranylv
4
uranylv versus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!