Background: In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval.

Results: Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus.

Conclusions: Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and chemokines which also have significant relevance to disc biology. Since the degenerating human disc is primarily an avascular tissue site into which disc cells have contributed high levels of proinflammatory cytokines, these substances are not cleared from the tissue and remain there over time. We hypothesize that as nerves grow into the human annulus, they encounter a proinflammatory cytokine-rich milieu which may sensitize nociceptors and exacerbate pain production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495673PMC
http://dx.doi.org/10.1186/1744-8069-8-63DOI Listing

Publication Analysis

Top Keywords

gene expression
12
human annulus
12
control discs
12
analysis pain-
8
pain- nerve-
8
degenerating human
8
disc
8
ontology searches
8
specimens human
8
human disc
8

Similar Publications

Determination of antimicrobial susceptibility and virulence-related genes of Trueperella pyogenes strains isolated from various clinical specimens in animals.

Pol J Vet Sci

June 2024

Department of Surgery, Faculty of Veterinary Medicine, University of Siirt, Kezer Campus, Veysel Karani District, University Street, Siirt/Türkiye.

In this study, a total of 32 Trueperella pyogenes strains isolated from different disease specimens in cattle, sheep and goats were examined. Antimicrobial susceptibility of the isolates to 10 antimicrobials were determined using the E-test method and MIC values of the antimicrobials were investigated. The genes that play a role in the antimicrobial resistance or virulence of T.

View Article and Find Full Text PDF

The effect of silymarin on diabetes mellitus-induced male rats reproductive impairment: Evidences for role of heat shock proteins 70 and 90.

Pol J Vet Sci

December 2024

Department of Basic sciences, Faculty of Veterinary Medicine, Tabriz medical sciences branch, Islamic Azad University, 5159115705, Tabriz, Iran.

Male fertility is adversely influenced by diabetes. The beneficial effects of antioxidant bioflavonoids in improving fertility have been reported. This study was conducted to evaluate the effects of silymarin on diabetes mellitus-induced male reproductive impairment in rats by investigating its role in Hsp70 and Hsp90 expression.

View Article and Find Full Text PDF

Cellular distribution of some intermediate filaments in the rat mammary gland during pregnancy, lactation and involution.

Pol J Vet Sci

December 2024

Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey.

Intermediate filaments (IFs) play a major role in determining and maintaining cell shape and anchoring intracellular organelles in place, in the tissues and organs of several species, starting from the early stages of development. This study was aimed at the immunohistochemical investigation of the presence, cellular localization and temporal distribution of the intermediate filaments keratin 8 (CK8), keratin 18 (CK18), keratin 19 (CK19), vimentin, desmin and laminin, all of which contribute to the formation of the cytoskeleton in the rat mammary gland during pregnancy, lactation and involution. On days 7, 14 and 21 of pregnancy (pregnancy period), on day 7 post-delivery (lactation period) and on day 7 post-weaning (involution period), under ketamine hydrochloride (Ketalar-Pfizer) (90 mg/kg) anesthesia, two mammary glands were fully excised from the abdominal region.

View Article and Find Full Text PDF

Background: Real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a powerful tool for analysing target gene expression in biological samples. To achieve reliable results by RT-qPCR, the most stable reference genes must be selected for proper data normalisation, particularly when comparing cells of different types. We aimed to choose the least variable candidate reference genes among eight housekeeping genes tested within a set of human cancer cell lines (HeLa, MCF-7, SK-UT-1B, A549, A431, SK-BR-3), as well as four lines of normal, non-malignant mesenchymal stromal cells (MSCs) of different origins.

View Article and Find Full Text PDF

Background: Alternative cleavage and polyadenylation (APA) is a crucial post-transcriptional gene regulation mechanism that regulates gene expression in eukaryotes by increasing the diversity and complexity of both the transcriptome and proteome. Despite the development of more than a dozen experimental methods over the last decade to identify and quantify APA events, widespread adoption of these methods has been limited by technical, financial, and time constraints. Consequently, APA remains poorly understood in most eukaryotes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!