Nanostructured silica based xerogels and aerogels are prepared by sol-gel technology, using methyltrimethoxysilane as precursor. The influence of the drying method and conditions on the microstructure of the obtained materials is investigated, since the drying stage has a critical influence on their porosity. Two types of drying methods were used: atmospheric pressure drying (evaporative), to produce xerogels, and supercritical fluids drying, to obtain aerogels. Although the supercritical fluids drying technique is more expensive and hazardous than the atmospheric pressure drying, it is well known that aerogels are less dense than the xerogels due to less pore shrinkage. However, the ideal situation would be to use atmospheric pressure drying in conditions that minimize the pore collapse. Therefore, in this work, different temperature cycles for atmospheric pressure drying and two heating rates for the supercritical fluids drying are tested to study the gels' shrinkage by analyzing the density and porosity properties of the final materials. The best materials obtained are aerogels dried with the lower heating rate (approximately 80 degrees C/h), since they exhibit very low bulk density (approximately 50 kg/m3), high porosity (95%)-mainly micro and mesopores, high surface area (approximately 500 m2/g), moderate flexibility and a remarkable hydrophobic character (>140 degrees). It was proved that the temperature cycles of atmospheric pressure drying can be tuned to obtain xerogels with properties comparable to those of aerogels, having a bulk density only approximately15 kg/m3 higher. All the synthesized materials fulfill the requirements for application as insulators in Space environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2012.4560 | DOI Listing |
ACS Nano
January 2025
Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
Solar desalination is one of the effective means to alleviate water scarcity, in which aerogel-like evaporators have attracted extensive attention in the field of efficient desalination. However, the current preparation methods for aerogels still mainly rely on high-cost solutions, such as freeze-drying or supercritical drying. Herein, a preparation scheme for aerogels that can be realized under atmospheric pressure conditions is reported.
View Article and Find Full Text PDFFront Pediatr
January 2025
The Ritchie Centre, Hudson Institute of Medical Research, Clayton VIC, Australia.
Introduction: As airway liquid is cleared into lung interstitial tissue after birth, the chest wall must expand to accommodate this liquid and the incoming air. We examined the effect of applying external positive and negative pressures to the chest wall on lung aeration in near-term rabbit kittens at risk of developing respiratory distress.
Methods: Rabbit kittens (30 days; term ∼31 days) were randomised into and groups.
Anal Chem
January 2025
Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.
Ion optics are crucial for spectrometric methods such as mass spectrometry (MS) and ion mobility spectrometry (IMS). Among the wide selection of ion optics, temporal ion gates are of particular importance for time-of-flight MS (TOF-MS) and drift-tube IMS. Commonly implemented as electrostatic ion gates, these optics offer a rapid, efficient means to block ion beams and form discrete ion packets for subsequent analysis.
View Article and Find Full Text PDFMetal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.
View Article and Find Full Text PDFMid-infrared dual-comb spectroscopy offers significant advantages by combining the high sensitivity of mid-infrared spectroscopy with the high spectral resolution and rapid acquisition of the dual-comb method. However, its effective resolution, constrained by the inherent comb line spacing, hinders its ability to resolve narrow absorption features, common in critical applications such as sub-Doppler spectroscopy, low-pressure gas analysis, and construction of the atmospheric profile. To address this challenge, we present a synchronous offset frequency tuning method for the mid-infrared dual-comb system to improve effective resolution far beyond comb line spacing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!