Cerium oxide dispersed multi walled carbon nanotubes as cathode material for flexible field emitters.

J Nanosci Nanotechnol

Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Center (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India.

Published: August 2012

AI Article Synopsis

  • Nanomaterials, particularly multi-walled carbon nanotubes (MWNT), play a crucial role in the electron sources used in flat panel displays, with specific focus on their improved field emission properties through surface modification.
  • Cerium oxide (CeO2) nanoparticles were successfully integrated with MWNT using catalytic chemical vapor deposition, and their structural characteristics were confirmed through various analytical techniques like XRD and TGA.
  • The study found that the CeO2/MWNT composite exhibited a lower turn-on voltage and higher emission current density compared to pure MWNT, highlighting the enhanced performance of the modified structure for electronic applications.

Article Abstract

Nanomaterials based electron sources are omnipresent in modern flat panel displays. Multi walled carbon nanotubes (MWNT) are the well studied electron emitter among the carbon materials. Since the surface modification of MWNT with low work function materials would have a positive impact on the field emission property of MWNT, cerium oxide (CeO2) nanoparticles dispersed multi walled carbon nanotubes (CeO2/MWNT) were synthesized by catalytic chemical vapour deposition followed by chemical reduction and its field emission property was investigated. The high-purity MWNT as well as CeO2/MWNT showed crystalline structure conformed by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Further characterisation was done with Raman spectroscopy, UV-Visible absorption spectra and Fourier transform IR spectroscopy (FT-IR). The morphology and structural details of CeO2/MWNT composite was probed by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX). The direct evidence of the formation of CeO2/MWNT composites was given by transmission electron microscopy (TEM). The synthesized sample was coated over a flexible carbon paper using spin coating technique. The experiment was performed under a vacuum of 1 x 10(-6) Torr and Fowler-Nordheim equation was used to analyse the data. The turn-on voltage for the cerium oxide dispersed MWNT was found for a current density of 10 microA/cm2. The emission current density from the CeO2 nanoparticles dispersed MWNT reached 0.2 mA/cm2 at a reasonable bias field of 2.58 V/microm. The results were compared with those of pure MWNT and pure CeO2 nanoparticles with literature values.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2012.4541DOI Listing

Publication Analysis

Top Keywords

cerium oxide
12
multi walled
12
walled carbon
12
carbon nanotubes
12
ceo2 nanoparticles
12
oxide dispersed
8
dispersed multi
8
mwnt well
8
field emission
8
emission property
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!