Chronic gastric inflammation developing after Helicobacter pylori (H. pylori) infection is responsible for either dyspeptic symptom relevant to gastritis/peptic ulcer or gastric tumorigenesis, in which acid suppressants, especially proton pump inhibitors (PPIs), play role in relieving dyspepsia as well as the eradication regimen. Among several mediators engaged in propagating gastric inflammation after H. pylori infection, cyclooxygenase-2 (COX-2) might be the principal one, and several prescriptions have been made for decreasing the COX-2 levels. Multiple line of evidence are available for anti-inflammatory action of PPIs beyond acid suppression, but revaprazan, a novel acid pump antagonist launched in clinic, has also been suggested to exert significant anti-inflammatory actions as much as PPI. In the current study, we hypothesized that revaprazan could regulate H. pylori-driven COX-2 expression as one of its anti-inflammatory pharmacological actions. The changes of gastric COX-2 expression as well as responsible transcription factors were measured after H. pylori infection in the presence or absence of revaprazan. Infection of AGS cells with H. pylori induced significant up-regulation of COX-2 in time- and concentration-dependent manners, which was mediated by Akt phosphorylation. Revaprazan treatment significantly inhibited IkappaB-alpha degradation as well as Akt inactivation, resulting in attenuation of H. pylori-induced COX-2 expression. Additional rescuing action of revaprazan against H. pylori-induced cytotoxicity was noted. In conclusion, revaprazan imposed significant anti-inflammatory actions on H. pylori infection beyond acid suppression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432830PMC
http://dx.doi.org/10.3164/jcbn.11-94DOI Listing

Publication Analysis

Top Keywords

cox-2 expression
16
pylori infection
16
revaprazan novel
8
novel acid
8
acid pump
8
pump antagonist
8
anti-inflammatory action
8
pylori-induced cox-2
8
gastric inflammation
8
acid suppression
8

Similar Publications

Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

Inflammation is the critical component of neuropathic pain; therefore, this study aimed to assess the potential anti-inflammatory effects of L. extracts in a vincristine-induced model of neuropathic pain. The effects of different doses (5.

View Article and Find Full Text PDF

Farnesoid X receptor (FXR), a nuclear receptor, is expressed in calvaria and bone marrow stromal cells and plays a role in bone homeostasis. However, the mechanism of FXR-activated osteoblast differentiation remains unclear. In this study, we investigated the regulatory mechanism underlying FXR-activated osteoblast differentiation using bone morphogenetic protein-2 (BMP-2)-induced mouse ST-2 mesenchymal stem cells.

View Article and Find Full Text PDF

Pterostilbene protects against lipopolysaccharide-induced inflammation and blood-brain barrier disruption in immortalized brain endothelial cell lines in vitro.

Sci Rep

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.

Brain microvascular endothelial cells are connected by tight junction (TJ) proteins and interacted by adhesion molecules, which participate in the selective permeability of the blood-brain barrier (BBB). The disruption of BBB is associated with the progression of cerebral diseases. Pterostilbene is a natural compound found in blueberries and grapes with a wide range of biological activities, including anti-inflammatory, antioxidant, and anti-diabetic effects.

View Article and Find Full Text PDF

Cardioprotective potential of tectochrysin against vanadium induced heart damage via regulating NLRP3, JAK1/STAT3 and NF-κB pathway.

J Trace Elem Med Biol

January 2025

Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.

Background: Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties.

Aim: The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!