The involvement of B cells, complement activation and subsequent immune complex deposition has all been implicated in the pathogenesis of rheumatoid arthritis (RA). Although the reduced expression of complement receptor 1 (CR1, CD35) and 2 (CR2, CD21) on the B cells of RA patients has been known for a long time, their exact role in B-cell tolerance and autoimmunity is not yet fully understood. To get a deeper insight into the possible mechanisms, we studied the expression and function of CR1 and CR2 on various subsets of B cells of healthy donors and RA patients at various stages of the disease by FACS analysis, (3)H-thymidine incorporation and ELISA. We found that CD19(+)CD27(-) naive B cells up-regulate the expression of the inhibitory CR1 during differentiation to CD19(+)CD27(+) memory B cells both in healthy donors and in RA patients, whereas the expression of the activatory CR2 is down-regulated. This clearly demonstrates that the expression of these two antagonistic complement receptors is regulated differentially during the development of human B cells, a phenomenon which may influence the maintenance of peripheral B-cell tolerance. Our functional studies show that after clustering CR1 both by its natural ligand and To5 mAb, the inhibitory function of CD35 is maintained in RA patients, despite its significantly reduced expression compared with healthy individuals. Besides blocking B-cell receptor-induced proliferation, CR1 inhibits the differentiation of B cells to plasmablasts and their immunoglobulin production. Since the reduced expression of CR1 in RA patients does not affect its inhibitory function, this receptor might serve as a new target for therapeutical interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxs090DOI Listing

Publication Analysis

Top Keywords

reduced expression
12
complement receptor
8
cr1 cd35
8
rheumatoid arthritis
8
b-cell tolerance
8
cells healthy
8
healthy donors
8
donors patients
8
inhibitory function
8
cr1
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!