Whole microvascular unit deletions in dermatomyositis.

Ann Rheum Dis

Neuropediatry Unit, AP-HP, Necker - Enfants Malades, Hospital, Paris, France.

Published: March 2013

Objectives: The pathophysiology of dermatomyositis (DM) remains unclear, combining immunopathological mechanisms with ischaemic changes regarded as a consequence of membranolytic attack complex (MAC)-induced capillary destruction. The study is a reappraisal of the microvascular involvement in light of the microvascular organisation in normal human muscle.

Methods: Muscle microvasculature organisation was analysed using 3D reconstructions of serial sections immunostained for CD31, and histoenzymatic detection of endogenous alkaline phosphatase activity of microvessels. An unbiased point pattern analysis-based method was used to evaluate focal capillary loss. Double immunostainings identified cell types showing MAC deposits.

Results: The normal arterial tree includes perimysial arcade arteries, transverse arteries penetrating perpendicularly into the endomysium and terminal arterioles feeding a microvascular unit (MVU) of six to eight capillaries contacting an average of five myofibres. Amyopathic DM cases (n=3) and non-necrotic fascicles of early DM cases (n=27), showed patchy capillary loss in the form of 6-by-6 capillary drop-out, corresponding to depletion of one or multiple MVUs. MAC deposits were also clustered (5-8 immunostained structures, including endothelial cells, but also pericytes, mesenchymal cells and myosatellite cells).

Conclusions: Capillary loss may not be the primary cause of muscle ischaemia in DM. The primary event rather stands upstream, probably at the level of perimysial arcade arteries around which inflammatory infiltrates predominate and which lumen may show narrowing in chronic DM. Ischaemia-reperfusion injury, which is favoured by autoimmune backgrounds in experimental models and which activates the complement cascade in capillaries, could represent an hitherto unsuspected (and potentially preventable) mechanism of muscle damage in DM.

Download full-text PDF

Source
http://dx.doi.org/10.1136/annrheumdis-2012-201822DOI Listing

Publication Analysis

Top Keywords

capillary loss
12
microvascular unit
8
perimysial arcade
8
arcade arteries
8
capillary
5
microvascular
4
unit deletions
4
deletions dermatomyositis
4
dermatomyositis objectives
4
objectives pathophysiology
4

Similar Publications

Perifoveal vascular anomalous complex and telangiectatic capillaries: An overview of two entities potentially sharing a common pathophysiology.

Surv Ophthalmol

January 2025

School of Medicine, Vita-Salute San Raffaele University, Milan, Italy; Division of head and neck, Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. Electronic address:

Focal capillary ectasia in the macular region can manifest in distinct clinical scenarios, which can be categorized into two main entities: perifoveal vascular anomalous complex (PVAC) and telangiectatic capillaries (TelCaps). PVAC represents a primary, idiopathic condition, whereas TelCaps occur secondary to underlying vascular disorders, including diabetic macular edema and retinal vein occlusion. We provide a comprehensive analysis of these two entities, encompassing their clinical presentations, multimodal imaging findings, histological evidence, and differential diagnosis from other retinal microvascular abnormalities, such as Type 1 macular telangiectasia, adult-onset Coats disease, Type 3 macular neovascularization in age-related macular degeneration, and retinal arterial macroaneurysms.

View Article and Find Full Text PDF

Purpose: Vascular impairments, including reduced capillary density (CD), impaired autoregulation capacity (Reg), and elevated intraocular pressure (IOP), have been identified as significant contributors to glaucomatous disease. This study implemented a theoretical model to quantify the impact of these impairments on retinal blood flow and oxygenation as intraluminal pressure (Pa) is varied.

Methods: A theoretical model of the retinal vasculature was used to simulate reductions in CD by 10% (early glaucoma) and 30% to 50% (advanced glaucoma), a range in autoregulation capacity from 0% (totally impaired) to 100% (totally functional), and normal (15 mm Hg) and elevated (25 mm Hg) levels of IOP.

View Article and Find Full Text PDF

Minimal change disease (MCD) accounts for 10 - 15% of idiopathic nephrotic syndromes in adults. Chronic hepatitis C virus (HCV) infection is rarely ascribed as a cause of MCD and was previously associated with interferon-based therapy. MCD in treatment-naïve chronic HCV infection is extremely rare, with only 3 cases reported in the literature.

View Article and Find Full Text PDF

The spatial zonation of the murine placental vasculature is specified by epigenetic mechanisms.

Dev Cell

January 2025

Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany. Electronic address:

The labyrinthian fetoplacental capillary network is vital for proper nourishment of the developing embryo. Dysfunction of the maternal-fetal circulation is a primary cause of placental insufficiency. Here, we show that the spatial zonation of the murine placental labyrinth vasculature is controlled by flow-regulated epigenetic mechanisms.

View Article and Find Full Text PDF

A 52-year-old female patient with a history of atrial septal defect repair presented with progressive dyspnea and echocardiographic findings suggestive of pulmonary hypertension (PH). Incidentally, a lung mass was discovered on computed tomography (CT). Initial evaluation revealed World Health Organization functional class III symptoms and significant weight loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!