Regulated intramembrane proteolysis (RIP) involves cleavage of a transmembrane segment of a protein, releasing the active form of a membrane-anchored transcription factor (MTF) or a membrane-tethered signaling protein in response to an extracellular or intracellular signal. RIP is conserved from bacteria to humans and governs many important signaling pathways in both prokaryotes and eukaryotes. Proteases that carry out these cleavages are named intramembrane cleaving proteases (I-CLips). To date, little is known about I-CLips in cyanobacteria. In this study, five putative site-2 type I-Clips (Ava_1070, Ava_1730, Ava_1797, Ava_3438, and Ava_4785) were identified through a genome-wide survey in Anabaena variabilis. Biochemical analysis demonstrated that these five putative A. variabilis site-2 proteases (S2Ps(Av)) have authentic protease activities toward an artificial substrate pro-σ(K), a Bacillus subtilis MTF, in our reconstituted Escherichia coli system. The enzymatic activities of processing pro-σ(K) differ among these five S2Ps(Av). Substitution of glutamic acid (E) by glutamine (Q) in the conserved HEXXH zinc-coordinated motif caused the loss of protease activities in these five S2Ps(Av), suggesting that they belonged to the metalloprotease family. Further mapping of the cleaved peptides of pro-σ(K) by Ava_4785 and Ava_1797 revealed that Ava_4785 and Ava_1797 recognized the same cleavage site in pro-σ(K) as SpoIVFB, a cognate S2P of pro-σ(K) from B. subtilis. Taking these results together, we report here for the first time the identification of five metallo-intramembrane cleaving proteases in Anabaena variabilis. The experimental system described herein should be applicable to studies of other RIP events and amenable to developing in vitro assays for I-CLips.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486370 | PMC |
http://dx.doi.org/10.1128/JB.01366-12 | DOI Listing |
Environ Sci Pollut Res Int
August 2024
Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
Hexavalent chromium (Cr (VI)) is a heavy metal that is distributed globally and poses a significant threat to the environment through various mechanisms. It can react with soil and water, leading to severe environmental damage. In this study, the toxicity of Cr (VI) was investigated by analyzing two major cyanobacteria species, Nostoc commune and Anabaena variabilis, commonly found in soil along with their consortia.
View Article and Find Full Text PDFRSC Adv
March 2024
Graduate School of Environmental Science, Hokkaido University Sapporo 060-0810 Japan
J Environ Manage
April 2024
Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt. Electronic address:
Microalgae represent a promising renewable feedstock for the sustainable production of biohydrogen. Their high growth rates and ability to fix carbon utilizing just sunlight, water, and nutrients make them well-suited for this application. Recent advancements have focused on improving microalgal hydrogen yields and cultivation methods.
View Article and Find Full Text PDFInt J Biol Macromol
March 2024
NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China. Electronic address:
Phenylalanine ammonia-lyase (PAL) has various applications in fine chemical manufacturing and the pharmaceutical industry. In particular, PAL derived from Anabaena variabilis (AvPAL) is used as a therapeutic agent to the treat phenylketonuria in clinical settings. In this study, we aligned the amino acid sequences of AvPAL and PAL derived from Nostoc punctiforme (NpPAL) to obtain several mutants with enhanced activity, expression yield, and thermal stability via amino acid substitution and saturation mutagenesis at the N-terminal position.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!