The study of the interaction of glycoside hydrolases with their substrates is fundamental to diverse applications in medicine, food and feed production, and biomass-resource utilization. Recent molecular modeling of the α-xylosidase CjXyl31A from the soil saprophyte Cellvibrio japonicus, together with protein crystallography and enzyme-kinetic analysis, has suggested that an appended PA14 protein domain, unique among glycoside hydrolase family 31 members, may confer specificity for large oligosaccharide fragments of the ubiquitous plant polysaccharide xyloglucan (J. Larsbrink, A. Izumi, F.M. Ibatullin, A. Nakhai, H.J. Gilbert, G.J. Davies, H. Brumer, Biochem. J. 2011, 436, 567-580). In the present study, a combination of NMR spectroscopic techniques, including saturation transfer difference (STD) and transfer NOE (TR-NOE) spectroscopy, was used to reveal extensive interactions between CjXyl31A active-site variants and xyloglucan hexa- and heptasaccharides. The data specifically indicate that the enzyme recognizes the entire cello-tetraosyl backbone of the substrate and product in positive enzyme subsites and makes further significant interactions with internal pendant α-(1→6)-linked xylosyl units. As such, the present analysis provides an important rationalization of previous kinetic data on CjXyl31A and unique insight into the role of the PA14 domain, which was not otherwise obtainable by protein crystallography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201200488 | DOI Listing |
Heliyon
January 2025
Division of Polymer Chemistry, Department of Chemistry, Atomic Energy Commission, P.O. Box: 6091, Damascus, Syrian Arab Republic.
The degree of sulfonation (DS) is a key property of sulfonated polymers, as it significantly influences their swelling behaviour, conductivity and mechanical properties. Accurately determining the DS is essential for optimizing these materials for various applications. In this work, the DS of sulfonated poly (ether ether ketone) (SPEEK) was evaluated using a combination of analytical techniques, including titration, back titration, Fourier Transform Infrared (FTIR), Ultra-Violet (UV) and proton nuclear magnetic resonance (H NMR) spectroscopies, Thermogravimetric analysis (TGA), Rutherford backscattering (RBS) and particle induced X-ray emission (PIXE) analysis.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
Chronic myeloid leukaemia (CML) is primarily treated using imatinib mesylate, a tyrosine kinase inhibitor (TKI) targeting the BCR::ABL1 oncoprotein. However, the development of drug resistance and adverse side effects necessitate the exploration of alternative therapeutic agents. This study presents the synthesis and characterization of a novel imatinib analogue, 3-chloro--(2-methyl-5-((4-(pyridin-2-yl)pyrimidin-2-yl)amino)phenyl)benzamide (PAPP1).
View Article and Find Full Text PDFJ Biomol NMR
January 2025
Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the N spectral frequency dimension.
View Article and Find Full Text PDFChem Biodivers
January 2025
Baoji University of Arts and Sciences, College of Chemistry and Chemical Engineering, No. 1 Hi-Tech Avenue, 721013, Baoji, CHINA.
An unusual clathrate-type meroterpenoid isoatlantinone A (1), two new steroids acrocalysterols E (2) and F (3), together with fifteen known compounds (4-18) were separated from a plant-associated fungus Penicillium fellutanum. Their structures and absolute configurations were established based on spectroscopic data (NMR and HRESIMS), electronic circular dichroism (ECD) and modified Mosher's method. Notably, compound 1 represents an unusual highly oxygenated meroterpenoid derivative with a unique caged bioxatetracyclo-[6.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Chemistry, Islamic University of Science and Technology, Awantipora, JK, India.
, a high-altitude medicinal herb, possesses diverse therapeutic properties. This study conducted a comprehensive phytochemical analysis of the whole plant, leading to the isolation of 15 secondary metabolites (1-15) across various classes: flavonoids (), triterpenoids (, ), sesquiterpenoid lactones (, ) and furanocoumarins (, ) along with three steroids (). These compounds were characterized using NMR (HNMR,C NMR, 2D NMR), IR, HRMS and UV-VIS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!