Maternal and offspring dopamine D4 receptor genotypes interact to influence juvenile impulsivity in vervet monkeys.

Psychol Sci

Department of Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Published: October 2012

The merging of psychological and genetic methodologies has led to an increasing appreciation of environmental moderators of the relationships between genotype and phenotype. Here we used a nonhuman-primate model to study the moderating effect of the mother's genotype on the association of a dopamine D4 receptor (DRD4) gene polymorphism with juvenile impulsivity, assessed in a standardized social-challenge test. The results showed that juvenile carriers of the rare 5-repeat variant of the exon III 48-base-pair repeat polymorphism scored significantly higher in social impulsivity than juveniles homozygous for the common 6-repeat allele. In addition, juvenile genotype interacted with maternal genotype to influence impulsivity, with the highest rates of impulsivity found in variant offspring with variant mothers. These results highlight the importance of considering the genotype of the parents in studies of early experience and vulnerability genes for impulsivity-related traits.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0956797612444905DOI Listing

Publication Analysis

Top Keywords

dopamine receptor
8
juvenile impulsivity
8
impulsivity
5
genotype
5
maternal offspring
4
offspring dopamine
4
receptor genotypes
4
genotypes interact
4
interact influence
4
juvenile
4

Similar Publications

Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.

View Article and Find Full Text PDF

Introduction: Adjunctive therapies to treat OFF episodes resulting from long-term levodopa treatment in Parkinson disease (PD) are hampered by safety and tolerability issues. Istradefylline offers an alternative mechanism (adenosine A2A receptor antagonist) and therefore potentially improved tolerability.

Methods: A systematic review of PD adjuncts published in 2011 was updated to include randomized controlled trials published from January 1, 2010-April 15, 2019.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex developmental disorder characterized by several behavioral impairments, especially in socialization, communication, and the occurrence of stereotyped behaviors. In rats, prenatal exposure to valproic acid (VPA) induces autistic-like behaviors. Previous studies by our group have suggested that the autistic-like phenotype is possibly related to dopaminergic system modulation because tyrosine hydroxylase (TH) expression was affected.

View Article and Find Full Text PDF

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF

Dopaminergic system gains importance in homeostatic sleep regulation, but the role of different dopamine receptors is not well-defined. 72 h rat electrocorticogram and sleep recordings were made after single application of dopaminergic drugs in clinical use or at least underwent clinical trials. The non-selective agonist apomorphine evoked short pharmacological sleep deprivation with intense wakefulness followed by pronounced sleep rebound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!